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a b s t r a c t

Approximation capabilities of two types of computational models are explored: dictionary-based models
(i.e., linear combinations of n-tuples of basis functions computable by units belonging to a set called
‘‘dictionary’’) and linear ones (i.e., linear combinations of n fixed basis functions). The two models
are compared in terms of approximation rates, i.e., speeds of decrease of approximation errors for a
growing number n of basis functions. Proofs of upper bounds on approximation rates by dictionary-based
models are inspected, to show that for individual functions they do not imply estimates for dictionary-
based models that do not hold also for some linear models. Instead, the possibility of getting faster
approximation rates by dictionary-based models is demonstrated for worst-case errors in approximation
of suitable sets of functions. For such sets, even geometric upper bounds hold.

© 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Many computational models used in neurocomputing belong
to the class of ‘‘dictionary-based computational models’’. They
consist of one ‘‘hidden layer ’’ of computational units (such as
perceptrons, kernel units, and radial units) and one linear output.
The set of functions computable by hidden units is called a
dictionary (Gribonval & Vandergheynst, 2006). Dictionary-based
models with n hidden units compute all linear combinations of
arbitrary n-tuples of functions from the dictionary. Thus they are
sometimes called ‘‘variable-basis models’’ (Kůrková & Sanguineti,
2002), in contrast to linear models, where one has merely linear
combinations of first n elements of a set of basis functions with a
fixed linear ordering.

Dictionary-based models have been extensively used in ma-
chine learning and optimization tasks (see, e.g., Alessandri & San-
guineti, 2005; Giulini & Sanguineti, 2009; Gnecco & Sanguineti,
2009, 2010; Kůrková & Sanguineti, 2008a, and references therein).
These models contain more adjustable parameters than linear
models with the same number of units. Indeed, in addition to out-
put weights (i.e., coefficients of linear combinations of hidden-unit
functions) also inner parameters of hidden units (such as input
weights, biases, widths, and centers) are adjustable during learn-
ing. So, it seems obvious that dictionary-based models should be
able to achieve better rates in approximation ofmultivariable func-
tions. This has been confirmed experimentally. For example, in
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Zoppoli, Sanguineti, and Parisini (2002) simulation results on high-
dimensional optimization tasks were presented, showing that lin-
ear combinations of basis functions with adjustable parameters
perform better than linear schemes expressed as linear combina-
tions of the same basis functions with fixed parameter values—the
overall number of adjustable parameters (i.e., coefficients of linear
combinations and parameters in the basis functions) being fixed.

Yet theoretically, proving that dictionary-based models are
more powerful than the linear ones performing the same multi-
variable approximation tasks is not easy. The comparison of linear
models with variable-basis ones was initiated by Barron (1993).
He proposed to compare upper bounds on dictionary-based ap-
proximation of certain sets of functions with lower bounds on
worst-case errors in approximation of the same sets by optimal
linear approximators, formalized by the concept of ‘‘n-width’’ (Kol-
mogorov, 1936). The n-width of a set, introduced by Kolmogorov
and later called the ‘‘Kolmogorov width’’, is defined as the worst-
case error in approximation of elements of the set by an optimal
n-dimensional subspace; it measures ‘‘how far’’ the set is from be-
ing n-dimensional.

Using the ‘‘big O’’ and ‘‘bigΩ ’’ notations (see, e.g., Knuth, 1976),
Barron (1993) showed that certain dictionary-based models can
achieve aworst-case approximation error of orderO


n−1/2


, while

Pinkus (1985, pp. 232–233) proved that asymptotically linear
methods cannot do better than Ω


n−1/d


, where d denotes the

number of variables, i.e., the number of inputs to the computational
model. But such a comparisonmust be consideredwith care, as the
‘‘big O’’ and ‘‘bigΩ ’’ notations hide coefficients that often depend
on the number d of variables (Kainen, Kůrková, & Sanguineti,
2009b) and, in addition, the two bounds apply to different sets
of functions. The O


n−1/2


bound from Barron (1993) applies to
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the dictionary-based approximation in the worst case for balls in
certain norms tailored to the dictionary (Kůrková, 2003). Instead,
the Ω


n−1/d


bound for linear approximation applies to the best

possible linear approximator used for the worst case in Sobolev
balls. Although some embeddings of Sobolev balls into balls
defined via norms tailored to certain dictionaries were derived
(Barron, 1993; Kainen, Kůrková, & Sanguineti, 2009a; Kainen,
Kůrková, & Vogt, 2007), the radii of these balls may depend on d
exponentially.

In Barron (1993), Barron investigated worst-case errors in
approximation of certain sets of functions by perceptron neural
networks and compared these errors with Kolmogorov widths
of related sets of functions (differing by the domains). Kůrková
and Sanguineti (2002) extended his results to sets of functions
on the same domains and more general dictionaries. For kernel
units, Gnecco, Kůrková, and Sanguineti (2010) compared upper
bounds on dictionary-based approximation due to Barron (1993),
Jones (1992) and Maurey (see Pisier (1981)) with lower bounds
on the Kolmogorov width. They derived their comparisons using
properties of integral operators with kernels corresponding to
computational units and relationships among these operators and
norms induced by computational units.

In this paper, we further develop the comparison between lin-
ear and dictionary-based models. First, by analyzing constructive
proofs of estimates of approximation rates by variable-basis mod-
els derived in the form cn−1/2 by Barron (1993) and in the form
cn−1 byKůrková and Sanguineti (2008b),we show that these proofs
do not provide arguments for faster rates of approximation by
dictionary-based models than by linear ones for individual func-
tions. Indeed, such proofs are based on incremental procedures
constructing for each function to be approximated a linear order-
ing of the dictionary, specially tailored to this function. So, an upper
bound on the distance from the linear subspace generated by the
first n elements in this ordering also implies an upper bound on the
distance from the set of functions computable by the dictionary-
basedmodel. To emphasize implications of the constructive proofs
of upper bounds on dictionary-based approximation from Barron
(1993) and Kůrková and Sanguineti (2008b), we reformulate these
upper bounds as estimates of rates of linear approximators spe-
cially tailored to each function to be approximated. Thus, for indi-
vidual functions the upper bounds fromBarron (1993) andKůrková
and Sanguineti (2008b) do not give better estimates of rates of
dictionary-based approximators than estimates of rates of linear
approximators.

However, the upper bounds ondictionary-based approximation
hold for all functions in rather large sets defined by suitable
constraints (such as bounds on certain variational norms), so they
can be exploited to compare worst-case errors in these sets for
both types of approximators: dictionary-based and linear ones.
Exploiting certain invariance properties of worst-case errors in
linear approximation, we derive lower bounds on the n-widths
of sets of functions for which upper bounds from Barron (1993)
and Kůrková and Sanguineti (2008b) hold. We compare worst-
case errors in linear and dictionary-based approximation, for
dictionaries that are ‘‘large enough’’ to contain orthogonal sets, the
elements of which have norms decreasing to zero ‘‘rather slowly’’.
Taking advantage of orthonormal sets related to dictionaries
formed by perceptrons with periodic or sigmoidal activation
functions, we obtain proofs of better rates of approximation by
such perceptron networks than by linear models.

The paper is organized as follows. In Section 2, we introduce
notations and basic properties of approximation by linear and
dictionary-based models. In Section 3, we analyze incremental
constructions which were used in Barron (1993), Kůrková and
Sanguineti (2008b) and Lavretsky (2002) to derive upper bounds
on dictionary-based approximation. In Section 4, we investigate
worst-case errors in approximation by linear and dictionary-
based computational models for sets of functions associated with
orthonormal dictionaries.We apply the results to perceptronswith
certain periodic activations. Section 5 offers a comparison of linear
and dictionary-based approximation for orthogonal dictionaries,
with application to sigmoidal perceptron networks.

2. Approximation by linear and dictionary-based models

In traditional linear computational models, nested sets of the
form

span{g1, . . . , gn} :=


n−

i=1

wigi | wi ∈ R


are used as approximating families (R denotes the set of real
numbers). They are formed by linear combinations of the first n
elements from a set G = {gi | i ∈ N+} (N+ denotes the set of
positive integers) with a fixed linear ordering (typically, an ordered
sets of polynomials). In linear regression, merely coefficients of
a linear combination of these n a priori chosen functions are
adjustable.

In contrast to linear approximation schemes with a fixed lin-
ear ordering of G, many computational models used in neurocom-
puting can be formally described as variable-basis schemes. They
compute functions from sets

spannG :=


n−

i=1

wigi | wi ∈ R, gi ∈ G


,

where G is a set of functions, sometimes called dictionary (Gribon-
val & Vandergheynst, 2006), and n is the number of computational
units. Note that for G linearly independent with cardG > n, the set
spannG is not convex. Approximation by the family {spannG, n ∈

N+} is called variable-basis approximation (Kůrková & Sanguineti,
2001, 2002, 2008b) or approximation from a dictionary (Gribonval
& Vandergheynst, 2006).

Typically, dictionaries are parameterized sets of functions of the
form

Gφ = Gφ(Y ) := {φ(·, y) | y ∈ Y },

where φ : Ω × Y → R is a function of two vector variables,
Ω ⊆ Rd represents the set of inputs, and Y ⊆ Rq the set of
adjustable parameters. For example, elements of the dictionary
can be perceptrons, radial-basis-functions, or kernel units. Sets
spannGφ model sets of input–output functions of one-hidden-layer
neural networks, radial-basis-function networks, kernel models,
splines with free nodes, trigonometric polynomials with variable
frequencies and phases, etc. (Kůrková & Sanguineti, 2002). The
number n of hidden units can be interpreted as model complexity.
For example, if q = d + 1 and

φ(·, (v, b)) := ψ(⟨v, ·⟩ + b),

where ⟨·, ·⟩ denotes the inner product in Rd, then the dictionary
Gφ is formed by functions computable by perceptrons with an
activation unit ψ : R → R, where v ∈ Rd is an input weight vector
and b ∈ R is a bias. If q = d + 1, ψ is positive and even, and

φ(·, (v, b)) := ψ(b‖ · −v‖),

then Gφ is formed by functions computable by a radial unit ψ :

R → R+.
By (X, ‖ · ‖X) we denote a normed linear space and we write

merely X when there is no ambiguity. The error in approximation
of a function f ∈ X by functions from a set A is measured by the
distance of f from A

‖f − A‖X := inf
g∈A

‖f − g‖X.
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Approximation capabilities of sets of functions can be studied in
terms of worst-case errors, formalized by the concept of deviation.
For two subsets A andM of X, the deviation ofM from A is defined
as

δ(M, A) = δ(M, A; X) = δ(M, A; (X, ‖ · ‖X))

:= sup
f∈M

inf
g∈A

‖f − g‖X. (1)

We use the short notations when the ambient space and/or its
norm are clear from the context. When the supremum in (1) is
achieved, the deviation is theworst-case error in approximation of
functions fromM by functions from A.

Sometimes, the set M of functions to be approximated is
described in terms of a constraint that defines a norm ‖ · ‖ on X or
on its subspace. For instance, the setM may be the ball

Br(‖ · ‖) := {f ∈ X | ‖f ‖ ≤ r}

of radius r in the norm ‖ · ‖, centered in the origin.
To describe a theoretical lower bound on worst-case errors in

approximation by optimal linear subspaces, Kolmogorov (1936)
introduced the concept of n-width (later called Kolmogorov n-
width). Let Sn denote the family of all n-dimensional linear subspaces
of X. The Kolmogorov n-width of a subset M of a normed linear
space (X, ‖ · ‖X) is defined as the infimum of the deviations of M
from all n-dimensional linear subspaces of X, i.e.,

dn(M) = dn(M; X) = dn(M; (X, ‖ · ‖X))

:= inf
Xn∈Sn

δ(M,Xn; (X, ‖ · ‖X))

= inf
Xn∈Sn

sup
f∈M

inf
g∈Xn

‖f − g‖X. (2)

We adopt the short notations when there is no ambiguity. If for
some subspace the infimum is achieved, then the subspace is called
optimal. Loosely speaking, if the n-width of a set is ‘‘small’’, then
such a set can be viewed as ‘‘almost’’ n-dimensional, in the sense
that it is contained in a small neighborhood of some n-dimensional
subspace. It follows from the definition that the n-width does not
increasewhen a set is extended to its closure or its convex hull, i.e.,

dn(M) = dn(clXM) and dn(M) = dn(convM), (3)

where conv denotes the convex hull and clX the closure in the
topology induced by the norm ‖ · ‖X.

We shall compare dn(M) with the deviation δ(M, convn G),
where

convn G :=


n−

i=1

aigi | ai ∈ [0, 1],
n−

i=1

ai = 1, gi ∈ G


.

Since convn G ⊆ spann G, upper bounds on the deviation δ(M,
convn G) are also upper bounds on the deviation δ(M, spann G). Of
course, the worst-case error in linear approximation by an opti-
mal n-dimensional subspace generated by elements of G cannot
be smaller than the worst-case error in dictionary-based approxi-
mation by spann G. However, this does not exclude the possibility
that among other linear approximators than those generated by
elements of G, there exists one that approximates the setM better
than spann G, i.e., such that

dn(M) < δ(M, spann G) ≤ δ(M, convn G).

Obviously, the description of cases when the inequality

δ(M, convn G) < dn(M) (4)

holds is of a great interest. For such setsM , worst-case errors in ap-
proximation by convn G are smaller than those in approximation by
any linear n-dimensional subspace.
3. Inspection of upper bounds on approximation rates by
dictionaries

In this section, we reformulate upper bounds on dictionary-
based approximation as upper bounds on special linear approxi-
mators.

The following upper bound is a version of Jones’ result (Jones,
1992) as improved by Barron (1993) (see also in Pisier (1981) an
earlier estimate derived by Maurey).

Theorem 1 (Maurey–Jones–Barron, Barron, 1993, Jones, 1992 and
Pisier, 1981). Let (X, ‖ · ‖X) be a Hilbert space, G its bounded
nonempty subset, sG = supg∈G ‖g‖X, and f ∈ clX convG. Then, for
every positive integer n

‖f − convn G‖
2
X ≤

s2G − ‖f ‖2
X

n
.

In Kůrková (1997) (see also Kůrková, 2003), Theorem 1 was
extended using the concept of G-variation, defined for all functions
f ∈ X as

‖f ‖G := inf {c > 0 | f /c ∈ clX conv(G ∪ −G)} ,

where

−G := {−g | g ∈ G}.

Note that ‖ · ‖G is the Minkowski functional (Kolmogorov & Fomin,
1970, p. 131) of the set clX conv(G ∪ −G) and so it is a norm
on the subspace of X containing the elements f ∈ X for which
‖f ‖G < ∞.

Lavretsky (2002) noticed that the argument used by Barron
(1993) and Jones (1992) can yield better rates when applied to
functions satisfying a certain angular relationship with respect to
G. In Kůrková and Sanguineti (2008b), Kůrková and Sanguineti
showed that the estimate derived in Lavretsky (2002) holds for all
functions in the convex hull of any bounded subset of any Hilbert
space.

Theorem 2 (Kůrková & Sanguineti, 2008b). Let (X, ‖ · ‖X) be a
Hilbert space, G its bounded nonempty subset, and sG = supg∈G ‖g‖.
Then, for every f ∈ convG there exists τf ∈ [0, 1) such that for every
positive integer n

‖f − convn G‖
2
X ≤ τ n−1

f


s2G − ‖f ‖2

X


.

Let

τ(f ) := inf{τ > 0 | ‖f − convnG‖
2
X ≤ τ n−1(s2G − ‖f ‖2)}. (5)

For every f ∈ convG, the set over which this minimum is taken is
nonempty, closed, and bounded, so the infimum is attained—i.e.,

‖f − convnG‖
2
X ≤ τ(f )n−1(s2G − ‖f ‖2

X).

The proof of Theorem 2 is based on a constructive incremental
procedure, which improves the one used to prove Theorem 1. In
both these proofs, for every function f ∈ convG and its every
representation f =

∑m
j=1 ajgj as a convex combination of elements

of G, a linear ordering

{gj1 , . . . , gjm}

of the subset

G′
:= {g1, . . . , gm}

is constructed. Then, it is shown that for every positive integer
n ≤ m in the case of Theorem 1 one has

‖f − span{gj1 , . . . , gjn}‖
2
X ≤

s2G − ‖f ‖2
X

n
,

whereas in Theorem 2 for some τf ∈ [0, 1) one has
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‖ f − span{gj1 , . . . , gjn}‖
2
X ≤ τ n−1

f


s2G − ‖f ‖2

X


.

Formally, the proof of Theorem 2 from Kůrková and Sanguineti
(2008b) can be described as the following incremental construc-
tion. The structure of the proof of Theorem 1 from Barron (1993)
is similar to the structure of the proof of Theorem 2, merely the
choice of gjn is simpler.

Incremental construction
1 Choose gj1 ∈ {gj | j = 1, . . . ,m} such that ‖f − gj1‖X =

minj=1,...,m ‖f − gj‖X;
2 f1 := gj1 ;

For n = 2, . . . ,m − 1 :
begin
for j = 1, . . . ,m,

3 compute ηj := −
(f−fn−1)·(f−gj)

‖f−fn−1‖X ‖f−gj‖X
;

if for j = 1, . . . ,m one has ηj = 0, then
begin

4 f ∗
:= fn−1;

5 n∗
:= n − 1;

end
else
begin

6 ρn := max{ηj > 0 | j = 1, . . . ,m};
7 choose gjn such that ρn = ηjn ;
8 compute en−1 := ‖f − fn−1‖X;
9 compute rn := ‖f − gjn‖X;

10 compute αn :=
ρnen−1rn+r2n

e2n−1+2ρnen−1rn+r2n
;

11 fn := αn fn−1 + (1 − αn) gjn;
12 n := n + 1.

end
end

Let

k := max{n ∈ {1, . . . ,m} | fn ≠ fn−1}

τf := min{(1 − ρ2
n ) | n = 1, . . . , k} .

For every τ ∈ [0, 1), let

Aτ (G) := {f ∈ convG | τ(f ) = τ } .

The next proposition summarizes properties of the sets Aτ .

Proposition 1. Let (X, ‖ · ‖X) be a Hilbert space and G its bounded
nonempty subset. Then for every τ ∈ [0, 1) the following hold.

(i) G ⊆

τ>0 Aτ (G);

(ii) if τ1 ≤ τ2, then Aτ1(G) ⊆ Aτ2(G);
(iii) convG =


δ∈(0,1] Aδ(G).

Proof. (i) and (ii) follow by the definition of Aτ (G), whereas (iii) is
implied by Theorem 2. �

The inspections of the above-described incremental construc-
tion from the proof of Theorem 2 and of the simpler construction
from the proof of Theorem 1, allow one to reformulate such theo-
rems in terms of linear approximators tailored to functions to be
approximated. This is done in the next theorem.

Theorem 3. Let (X, ‖ · ‖X) be a Hilbert space, G its bounded
nonempty subset, and sG := supg∈G ‖g‖X. Then

(i) for every f ∈ Aτ (G) there exists a positive integer m and a linear
ordering {gj1 , . . . , gjm} of a subset of m elements of G such that
for all n = 1, . . . ,m

‖f − span{gj1 , . . . , gjn}‖X ≤ sGτ
n−1
2 ;
(ii) for every f ∈ convG there exists a positive integer m and a linear
ordering {gj1 , . . . , gjm} of a subset of m elements of G such that
for all n = 1, . . . ,m

‖f − span{gj1 , . . . , gjn}‖X ≤ sGτ
n−1
2 ;

(iii) for every positive integer n

δ(convG, convn G) ≤
sG
√
n
.

(iv) for every τ ∈ [0, 1) and every positive integer n

δ(Aτ (G), convn G) ≤ sGτ
n−1
2 .

Theorems 1–3 provide the same approximation rates for the
linear and the dictionary-based approximator. However, there is
a substantial difference between these two cases: in the case of
dictionary-based approximation the rate holds for all functions
from convG or Aτ (G), so it also holds for the worst case. In the
case of linear approximation, for each function f a specific linear
ordering is constructed, so there is no guarantee of one linear
ordering serving as a linear approximator with a guaranteed rate
for all functions from these sets.

4. Worst-case errors for orthonormal dictionaries and percep-
trons with periodic activations

In this section we compare, for sets Aτ (G) with G orthonormal,
the worst-case errors by linear computational models with those
by the dictionary G itself. To this end, we estimate from below
the n-widths of sets Aτ (G) and compare such lower bounds with
the upper bound provided by Theorem 3(iv) on deviation from
convn G. Then, we apply the results to orthonormal dictionaries
corresponding to perceptrons with periodic activation functions.

We take advantage of the invariance of the Kolmogorov width
under operations of symmetrization and convex closure. It follows
from the definition (2) that for everyHilbert space (X, ‖·‖X), every
bounded nonempty set G ⊂ X, and every positive integer n one
has

dn(G) = dn(B1(‖ · ‖G)). (6)

Hence, lower bounds on dn(G) can be obtained by estimating
dn(B1(‖·‖G)). Often this is easier, as balls B1(‖·‖G) aremuch larger
than sets G. In some cases, such balls contain large orthogonal
subsets, for which worst-case errors in linear approximation can
be estimated from below.

In Kůrková and Sanguineti (2002, Corollary 2), we derived a
lower bound on dn(G) via orthonormal sets contained in balls in
G-variation. Let G and S be bounded nonempty subsets of a Hilbert
space and S orthonormal such that 0 ≠ sS,G = supα∈S ‖α‖G < ∞.
For S infinite, Kůrková and Sanguineti (2002, Corollary 2) states
that for every positive integer n one has

dn(G) ≥
1

sS,G
(7)

and that for S finite of cardinality m and every positive integer
n ≤ m one has

dn(G) ≥
1

sS,G


1 −

n
m
. (8)

On the other hand, Proposition 1(i) implies that for every Hilbert
space (X, ‖ · ‖X), every bounded nonempty set G ⊂ X, every
τ ∈ [0, 1), and every positive integer n one has

dn(Aτ (G)) ≥ dn(G). (9)

Combining Eqs. (6)–(9) and taking into account Theorem 3(iv),
we get the following proposition.
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Proposition 2. Let (X, ‖·‖X) be a Hilbert space, G and S its bounded
nonempty subsets, sG := supg∈G ‖g‖X, and S orthonormal with 0 ≠

sS,G := supα∈S ‖α‖G < ∞. Then
(i) for every τ ∈ [0, 1) and every positive integer n

δ(Aτ (G), convn G) ≤ sG τ
n−1
2 ;

(ii) if S is infinite, then for every positive integer n

dn(Aτ (G)) ≥
1

sS,G
;

(iii) if S is finite of cardinality m, then for every positive integer
n ≤ m

dn(Aτ (G)) ≥
1

sS,G


1 −

n
m
.

Proposition 2(ii) implies that, whenever the unit ball in variation
with respect to the dictionary G contains a ball of non-zero radius
η in variation with respect to an infinite orthonormal set, Aτ (G)
cannot be approximatedwith an error smaller than η using a linear
computational model. In other words, no increase of the number n
can decrease the Kolmogorov n-width of Aτ (G) below η. Instead, by
Proposition 2(i) the deviation of Aτ (G) from convex combinations
of n elements of the dictionaryGdecreases exponentially fastwhen
n is increased.

When the dictionary G is orthonormal, we get the following
corollaries.

Corollary 1. Let (X, ‖ · ‖X) be a Hilbert space and G its orthonormal
subset. Then
(i) for every τ ∈ [0, 1) and every positive integer n

δ(Aτ (G), convn G) ≤ τ
n−1
2 ;

(ii) if G is infinite, then for every positive integer n

dn(Aτ (G)) ≥ 1;
(iii) if G is finite of cardinality m, then for every positive integer

n ≤ m

dn(Aτ (G)) ≥


1 −

n
m
.

Corollary 2. Let (X, ‖ · ‖X) be a Hilbert space and G its infinite
orthonormal subset. Then for every integer n > 1 and every τ ∈

[0, 1)

dn(Aτ (G)) > δ(Aτ (G), convnG).

For a set Ω ⊆ Rd, we denote by (L2(Ω), ‖ · ‖2) the
space of Lebesgue-measurable functions that are square integrable,
endowed with the L2-norm. Corollaries 1 and 2 can be exploited
to compare theL2-approximation of linearmodels and perceptron
networks with certain periodic activation functions.

Let J be a closed interval in R. We denote by

Pd(ψ, J) :=


f : Jd → R | f (x) = ψ(v · x + b), v ∈ Rd, b ∈ R


the set of functions on Jd computable by ψ-perceptrons. So,
convn Pd(ψ, J) represents the set of functions on Jd computable by
ψ-perceptron networks with n hidden units. We consider percep-
trons with activations that are the sine or the Haar function, which
is denoted by ξ and defined as ξ(t) = 1 for t ∈ [i, i + 1/2) and
ξ(t) = −1 for t ∈ [i − 1/2, i) for all integers i. Set J = [0, 1] and,
to simplify the notation, for every activation function ψ let
Pd(ψ) := Pd(ψ, [0, 1]).

Proposition 3. For all positive integers n, d and every τ ∈ [0, 1), the
following hold in L2([0, 1]d):
δ(Aτ (Pd(sin)), convn Pd(sin)) ≤
τ

n−1
2

√
2

;

dn(Aτ (Pd(sin))) ≥
1

√
2
,

δ(Aτ (Pd(ξ)), convn Pd(ξ)) ≤ τ
n−1
2 ;

dn(Aτ (Pd(ξ))) ≥ 1.

Proof. It is easy to check that for every positive integer d the
following two families of functions are orthonormal inL2([0, 1]d):

Sd(sin) :=

√
2 sin(πv · x) | v ∈ Nd

+


;

Sd(ξ) :=


ξ(v · x) | v ∈ {2j

; j ∈ N}
d

.

As the first family is a subset of
√
2Pd(sin) and the second one is a

subset of Pd(ξ), for every positive integers d, n and every τ ∈ [0, 1),
Proposition 2(ii) gives in L2([0, 1]d) the lower bounds

dn(Pd(sin)) = dn(B1(‖ · ‖Pd(sin))) ≥
1

√
2
, (10)

dn(Pd(ξ)) = dn(B1(‖ · ‖Pd(ξ))) ≥ 1. (11)

The other estimates follow by Proposition 2(i). �

Inspection of the proof of Proposition 3 shows that one-hidden-
layer perceptron networkswith either the sine or theHaar function
as an activation cannot be efficiently approximated by linear
models. Indeed, the lower bounds (10) and (11) imply that there
is no possibility of decreasing the L2-worst-case error in linear
approximation of Pd(sin) and Pd(ξ) under 1/

√
2 and 1, resp., by

increasing the number of basis functions in a linear computational
model.

Corollary 3. For every integer n > 1, every positive integer d, and
every τ ∈ [0, 1), the following hold in L2([0, 1]d):

dn(Aτ (Pd(sin))) > δ(Aτ (Pd(sin)), convn Pd(sin)),
dn(Aτ (Pd(ξ))) > δ(Aτ (Pd(sin)), convn Pd(ξ)).

5. Worst-case errors for orthogonal dictionaries and percep-
trons with sigmoidal activations

The unit ball B1(‖·‖G) in variationwith respect to the dictionary
G may not be ‘‘large enough’’ to contain a ball of some non-zero
radius in variation with respect to an infinite orthonormal set, as
required by Proposition 2. However, B1(‖ · ‖G) may contain a ball
in variation with respect to some orthogonal set, the elements of
which have norms going to zero rather slowly with respect to a
positive integer d. In Kůrková and Sanguineti (2002), such a slow
decrease was formalized by introducing the concept of a set ‘‘not
quickly vanishing with respect to d’’.

Let (X, ‖ · ‖X) be a normed linear space, S its countable subset,
and d a positive integer. We say that S is not quickly vanishing with
respect to d if it can be linearly ordered as S = {αj | j ∈ N}

in such a way that the norms of its elements are non-increasing
and for every positive integer r one has ‖αrd‖ ≥ 1/r . Note that S
is not quickly vanishing with respect to d if and only if it can be
represented as S =


r∈N Sr , where card Sr ≥ rd, ‖α‖ ≥ 1/r for

every α ∈ Sr , and, for every positive integer r ′ > r and α′
∈ Sr ′ ,

one has ‖α‖ ≥ ‖α′
‖.

In Kůrková and Sanguineti (2002, Corollary 3), it was proven
that if an orthogonal set S is not quickly vanishing with respect
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to d and 0 ≠ sS,G := supα∈S ‖α‖G < ∞ for a dictionary G, then for
n = rd/2 with some integer r one has

dn(G) ≥
1

sS,G
√
2 d√2n

. (12)

Combining Eqs. (6), (9) and (12) and taking into account Theo-
rem 3(ii), we get the following proposition.

Proposition 4. Let (X, ‖·‖X) be a Hilbert space, G and S its bounded
nonempty subsets, sG := supg∈G ‖g‖X, S orthogonal not quickly
vanishing with respect to a positive integer d, and 0 ≠ sS,G :=

supα∈S ‖α‖G < ∞. Then for every positive integer n and every
τ ∈ [0, 1)

(i) δ(Aτ (G), convn G) ≤ sGτ
n−1
2 ;

(ii) if 2n = rd for some integer r, then dn(Aτ (G)) ≥
1

sS,G
√
2 d√2n

.

When a dictionary G is a countable orthogonal set which is not
quickly vanishing with respect to a positive integer d, we get the
following estimates.

Corollary 4. Let (X, ‖ · ‖X) be a Hilbert space and G its countable
orthogonal subset, not quickly vanishing with respect to a positive
integer d and such that sG := supg∈G ‖g‖X ≤ 1. Then for every
positive integer n and every τ ∈ [0, 1) the following hold:

(i) δ(Aτ (G), convn G) ≤ sG τ
n−1
2 ;

(ii) if 2n = rd for some integer r, then dn(Aτ (G)) ≥
1

√
2 d√2n

.

The lower bounds from Corollary 4 imply that in linear approx-
imation of an orthogonal set of functions of d variables that is
not quickly vanishing with respect to d, the number of basis func-
tions necessary to guarantee an accuracy ε is of order Ω


1/εd


.

This lower bound exhibits the so-called ‘‘curse of dimensionality’’
(Bellman, 1957) (the term ‘‘dimensionality’’ referring to the num-
ber d of variables).

Corollary 4 can be exploited to compare linear computational
models and dictionary-based models corresponding to perceptron
neural networks with the most common activation functions,
the so-called sigmoidals, i.e., bounded measurable functions σ :

R → R such that limt→−∞ σ(t) = 0 and limt→+∞ σ(t) = 1.
One can use both continuous sigmoidals (like the logistic sigmoid
1/(1 + exp(−t)) or the hyperbolic tangent) and the discontinuous
Heaviside function ϑ , defined as ϑ(t) = 0 for t < 0 and ϑ(t) = 1
for t ≥ 0. Let J be a closed interval in R and

Pd(ϑ, J) :=


f : Jd → R | f (x) = ϑ(v · x + b), v ∈ Rd, b ∈ R


.

Note that the set Pd(ϑ, J) of functions computable by Heaviside
perceptrons is equal to the set of characteristic functions of half-
spaces of Rd restricted to Jd. Indeed, the function ϑ(v · . + b)
restricted to Jd is equal to the characteristic function of the set
{x ∈ Jd | v · x + b ≥ 0}. Analogously to Section 4, we consider
J = [0, 1] and to simplify the notation we let

Pd(ϑ) := Pd(ϑ, [0, 1]).

As variation with respect to half-spaces is bounded from below
by variation with respect to perceptrons with any sigmoidal
activation function σ (Kůrková & Sanguineti, 2002, Proposition
10(ii)), we get

dn(B1(‖ · ‖Pd(σ ))) ≥ dn(B1(‖ · ‖Hd)). (13)

Inspection of the proof of Kůrková and Sanguineti (2002,
Theorem 2) shows that a lower bound on dn(Hd) = dn(B1(‖ · ‖Hd))
was derived by using an orthogonal, not quickly vanishing set Ad
obtained by a proper scaling of the elements of the set Ad(sin) =√

2 sin(πv · x) | v ∈ Nd
+


.

For d, r ∈ N, let

Ad,r :=


αv(.) | v ∈ {1, . . . , r}d


⊂ L2([0, 1]d),

where αv(x) = cv sin(πv · x) : [0, 1]d → R, v = (v1, . . . , vd) ∈

Rd
+
and cv =

d
√
2∑d

k=1 vk

 . Set Ad = ∪r∈N Ad,r . First, it was proved in

Kůrková and Sanguineti (2002, Theorem 2) that Ad ⊆ B2d
√
2(‖ ·

‖Hd), and that Ad is not quickly vanishing with respect to d. By
embedding the sets Ad into a ball in variation with respect to
sigmoidal perceptrons, in Kůrková and Sanguineti (2002, Theorem
2 and Corollary 5) the following lower bound was obtained in
L2([0, 1]d)when 2n = rd for some integer r:

dn

B1(‖ · ‖Pd(σ ))


≥

1

4d d√2n
. (14)

By Eqs. (6), (9), (13) and (14), and taking into account Theo-
rem 3(ii), we get the following proposition.

Proposition 5. Let σ : R → R be a sigmoidal function. Then for all
positive integers d and n and every τ ∈ [0, 1), the following hold in
L2([0, 1]d):

(i) δ(Aτ (Pd(σ ), convn Pd(σ ))) ≤ τ
n−1
2 ;

(ii) if 2n = rd for some integer r, then dn(Aτ (Pd(σ ))) ≥
1

4d d√2n
.
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