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Abstract Limitations of shallow (one-hidden-layer) per-
ceptron networks are investigated with respect to computing
multivariable functions on finite domains. Lower bounds
are derived on growth of the number of network units or
sizes of output weights in terms of variations of functions
to be computed. A concrete construction is presented with
a class of functions which cannot be computed by signum
or Heaviside perceptron networks with considerably smaller
numbers of units and smaller output weights than the sizes
of the function’s domains. A subclass of these functions
is described whose elements can be computed by two-
hidden-layer perceptron networks with the number of units
depending on logarithm of the size of the domain linearly.

Keywords Shallow and deep networks · Model
complexity and sparsity · Signum perceptron networks ·
Finite mappings · Variational norms · Hadamard matrices

1 Introduction

Originally, biologically inspired neural networks were intro-
duced as multilayer computational models, but later, one-
hidden-layer architectures became dominant in applications
(see, e.g., [12, 20] and the references therein). Training of
networks with several hidden layers had been inefficient
until the advent of fast graphic processing units [32]. These
networks were called deep [4, 14] to distinguish them from
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shallow networks with merely one hidden layer. Currently,
deep networks with several convolutional and pooling layers
are the state of the art in computer vision and speech recog-
nition tasks (see the survey article [32] and the references
therein).

However, reservations about overall superiority of deep
networks over shallow ones have appeared. An empirical
study demonstrated that shallow networks can learn some
functions previously learned by deep ones using the same
numbers of parameters as the original deep networks [1].
On the other hand, it was conjectured: “most functions that
can be represented compactly by deep architectures cannot
be represented by a compact shallow architecture” [6].

Theoretical analysis complementing the experimental
evidence, obtained by some comparisons of deep and shal-
low networks solving the same tasks, is still in its early
stages. Bianchini and Scarselli [7] bounded numbers of
units in shallow and deep networks in terms of topolog-
ical properties of input-output functions. Mhaskar et al.
[36] suggested that due to their hierarchical structure, deep
networks could outperform shallow networks in visual
recognition of pictures with objects of different scales.

Characterization of functions, which can be computed
by deep networks of smaller model complexities than shal-
low ones, can be derived by comparing lower bounds on
numbers of units in shallow networks with upper bounds
on numbers of units in deep ones. Generally, derivation
of lower bounds is much more difficult than derivation of
upper ones. For shallow networks, various upper bounds
on numbers of units in dependence on types of units, input
dimensions, and types of functions to be computed are
known (see, e.g., [16] and the references therein), but only a
few lower bounds are available. A method of deriving lower
bounds exploiting continuous selection of best approxima-
tion [37] cannot be used for most types of common neural
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networks [17, 18]. Other lower bounds hold merely for types
of computational units that are not commonly used such
as perceptrons with specially designed activation functions
[34] or guarantee asymptotically existence of worst-case
errors in Sobolev spaces [35].

In practical applications, feedforward networks compute
functions on finite domains (such as pixels of photographs
or digitized high-dimensional cubes). It is well-known that
shallow networks with many common types of units can
represent any finite mapping provided that the number of
units is potentially as large as the size of the domain. For large
domains, such networks might be too large for efficient
implementations. Thus, it is desirable to investigate which
functions allow sparse representations by shallow networks.

An example of a class of functions which cannot be
sparsely represented by shallow networks with Gaussian
SVM units was given in [5] where it was proved that a shal-
low network with less than 2d−1 Gaussian support vectors
cannot classify correctly the elements of the set {0, 1}d of
points of a d-dimensional Boolean cube according to the
parity of the number of 1’s. It was suggested that a cause of
large model complexities of shallow networks might be the
“amount of variations” of functions to be computed.

Following up on this idea, we showed in [30] that the
effect of “high variations” of a function depends on a
type of computational units. We proposed to use a concept
of variational norm tailored to the type of computational
units as a measure of variations of a function influenc-
ing model complexity of networks with units of the given
type. Using a probabilistic argument, we proved that almost
any uniformly randomly chosen function on a sufficiently
large domain is highly varying with respect to Heaviside
or signum perceptrons, and thus, it cannot be represented
by perceptron networks with a reasonably small number of
units and sizes of output weights. However, our argument
proving existence of large sets of functions whose imple-
mentations by shallow perceptron networks require large
numbers of units or large sizes of output weights is not
constructive [30] and is based on the probabilistic Chernoff
bound related to the law of large numbers.

In this paper, we supplement the existential arguments
presented in [30] with constructive ones. A concrete class
of functions is described which cannot be sparsely repre-
sented by shallow signum and Heaviside perceptrons. As
minimization of the number of nonzero output weights is a
difficult nonconvex problem, we focus on a related concept
of sparsity used in weight-decay regularization techniques
minimizing l1-norms of output weights [12].

Variational norms enable an estimate of the rate at which
approximation accuracy increases as more network units are
added. We show that for finite dictionaries of computational
units, l1-sparsity is related to variational norm. Geomet-
rical properties of variational norm imply that functions

which are nearly orthogonal to any function computable by
a signum perceptron cannot be computed by perceptron net-
works with reasonably small numbers of units and sizes of
output weights. It is shown that Hadamard matrices, due to
their quasi-random distribution of +1’s and −1’s entries,
generate functions which are not correlated with any signum
of Heaviside perceptron. We prove that functions on finite
domains in R

d in the form of n × n rectangles generated by
Hadamard matrices cannot be computed by shallow Heav-
iside or signum perceptron networks having both number

of units and sizes of output weights smaller than
√

n
�log2 n� .

In particular, for domains of sizes 2k × 2k , such functions
cannot be computed by shallow perceptron networks with
numbers or units or sizes of output weights depending on k
polynomially.

Many concrete examples of functions to which our lower
bounds apply can be obtained from various constructions
of Hadamard matrices. Their listings are available at Neil
Sloane’s Library of Hadamard matrices [38]. The oldest
known type of recursive construction of Hadamard matrices
due to Sylvester is called Sylvester-Hadamard matrices. We
show that functions induced by 2k ×2k Sylvester-Hadamard
matrices have a compositional structure, and thus, they can
be represented by two-hidden-layer networks with k Heaviside
perceptrons in each hidden layer. On the other hand, our results
imply that they cannot be represented by shallow percep-
tron networks with both number of units and output weights

smaller than 2k

k
. A preliminary version of some results

appeared in a conference proceedings [24] where main
theorems of this paper with sketches of proofs were stated.

The paper is organized as follows. Section 2 contains
basic concepts on shallow networks and dictionaries of
computational units. Section 3 introduces variational norms
as tools for investigation of network complexity. Section 4
presents existential probabilistic results on functions which
cannot be computed by shallow signum perceptron net-
works with “small” numbers of units and sizes of output
weights. In Section 5, construction of concrete classes of
such functions is presented. In Section 6, there is described
a class of functions which can be computed by two-hidden-
layer networks with much smaller number of units than by
networks with one hidden layer. Section 7 is a brief discus-
sion. To make our exposition easier to follow, in the main
sections, we explain basic ideas of our arguments intuitively,
while detailed rigorous mathematical proofs are presented
in the Appendix.

2 Preliminaries

The most widespread type of a feedforward neural network
architecture is a one-hidden-layer network with a single
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linear output. Networks of this type compute input-output
functions belonging to sets of the form

spann G :=
{

n∑
i=1

wigi |wi ∈ R, gi ∈ G

}
,

where the coefficients wi are called output weights, G is
a set of functions computable by a given type of compu-
tational units called a dictionary, and n is the number of
network units. Recently, one-hidden-layer networks became
called shallow networks to distinguish them from deep ones
with two or more hidden layers of computational units.

A common type of a computational unit is perceptron,
which computes functions of the form

σ(v · x + b) : X → R,

where v ∈ R
d is called an input weight, b ∈ R a bias,

and σ : R → R an activation function. It is called sigmoid
when it is monotonic increasing and limt→−∞ σ(t) = 0 and
limt→∞ σ(t) = 1. Important types of activation functions
are the Heaviside function ϑ : R → {0, 1} defined as

ϑ(t) := 0 for t < 0 and ϑ(t) := 1 for t ≥ 0

and the signum function sgn : R → {−1, 1}, defined as

sgn(t) := −1 for t < 0 and sgn(t) := 1 for t ≥ 0.

We denote by Hd(X) the dictionary of functions on X ⊂
R

d computable by Heaviside perceptrons, i.e.,

Hd(X) := {ϑ(v · x + b) : X → {0, 1} | v ∈ R
d , b ∈ R} ,

and by Pd(X) the dictionary of functions on X computable
by signum perceptrons, i.e.,

Pd(X) := {sgn(v · x + b) : X → {−1, 1} | v ∈ R
d , b ∈ R}.

For a domain X ⊂ R
d , we denote by

F(X) := {f | f : X → R}
the set of all real-valued functions on X and by

B(X) := {f | f : X → {−1, 1}}
its subset of functions on X with values in {−1, 1}.

In practical applications, domains X ⊂ R
d of functions

to be computed by neural networks are finite, but their sizes
card X and/or input dimensions d can be quite large. It is
easy to see that when card X = m and X = {x1, . . . , xm}
is a linear ordering of X, then the mapping ι : F(X) →
R

m defined as ι(f ) := (f (x1), . . . , f (xm)) is an isomor-
phism. So on F(X), we have the Euclidean inner product
defined as

〈f, g〉 :=
∑
u∈X

f (u)g(u)

and the Euclidean norm ‖f ‖ := √〈f, f 〉. In contrast to
the inner product 〈., .〉 on F(X), we denote by · the inner
product on X ⊂ R

d , i.e., for u, v ∈ X,

u · v :=
d∑

i=1

uivi .

3 Variational norms as measures of sparsity

Shallow networks with many types of computational units
(including perceptrons and positive definite kernel units)
can exactly compute any function on any finite domain. We
call this capability the universal representation property.
The following general condition proven by Ito [15] guaran-
tees this property for a class of one-hidden-layer networks
with units from a dictionary of general computational units
in the form of a parameterized family

Gφ(X) = {φ(x, y) : X → R y ∈ Y },
where φ : X × Y → R is a function of two variables: an
input vector x ∈ X and a parameter vector Y.

Proposition 1 Let d, m be positive integers, X =
{x1, . . . , xm} ⊂ R

d , and Gφ(X) = {φ(., y) : X →
R |y ∈ Y }} be a dictionary of computational units. If there
exist y1 . . . , ym ∈ Y such that the matrix M with entries
Mi,j = φ(xi, yj ) is non singular, then for every function
f : X → R, there exist w1, . . . , wm such that f (x) =∑m

i=1wiφ(x, yi) for all x ∈ X.

It is well known that many dictionaries of computa-
tional units, e.g., positive definite kernel units and sigmoidal
perceptrons, satisfy the assumptions of Proposition 1 [15].
However, this proposition assumes that the number of hid-
den units is potentially equal to the size of the domain of
functions to be computed. For large domains, such networks
may be too large for efficient implementations. It is desir-
able that dictionaries of computational units are chosen in
such a way that input-output functions representing optimal
solutions (or reasonably suboptimal ones) of given tasks can
be computed by sufficiently sparse networks.

Minimization of the number of nonzero output weights in
a shallow network computing a given function f is a difficult
non convex task. In some literature, the number of nonzero
coefficients among wi’s in an input-output function

f =
n∑

i=1

wigi (1)

from spann G is called an “l0-pseudo-norm” in quotation
marks and denoted ‖w‖0. It can be defined as the Ham-
ming distance of the vector (ŵ1, . . . , ŵn) from zero, where
ŵi = 0 when wi = 0 and ŵi = 1 when wi 
= 0. It is neither
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a norm nor a pseudo-norm. The quantity ‖w‖0 is always an
integer, and thus, ‖ · ‖0 does not satisfy the homogeneity
property of a norm (‖λx‖ = |λ|‖x‖ for all λ). Moreover,
the “unit ball” {w ∈ R

n | ‖w‖0 ≤ 1} is non convex and
unbounded as it is equal to the union of all one-dimensional
subspaces of span G.

Instead of l0-minimization, minimizations of l1 and l2-
norms of output weights vectors w = (w1, . . . , wn) have
been used in weight-decay regularization techniques (see,
e.g., [12, p. 220]). Note that l1-norm minimization also
plays an important role in compressed sensing [8, 9]. Thus,
it is useful to consider an alternative concept of sparsity
defined in terms of l1-norm of output weight vector. Neither
small “l0-pseudo-norm” implies small l1-norm nor small l1-
norm implies small “l0-pseudo-norm” of an output weight
vector. However, small l1-norm guarantees that an input-
output function of a network can be well approximated by
input-output functions computable by networks with small
“l0-pseudo-norms”. To formulate this statement rigorously,
we first define a variational norm tailored to a dictionary of
computational units.

The representation (1) of a function f as an input-output
function of a shallow network with units from a dictionary
G is unique when the dictionary is linearly independent.
Many common dictionaries formed by functions defined on
R

d or its infinite compact subsets are linearly independent
(see, e.g., [25–27, 39]); however, this property may not be
guaranteed for dictionaries on finite domains. For a general
dictionary, we consider the minimum of l1-norms of out-
put weights over all representations of a given function f as
input-output functions of shallow networks with units from
the dictionary G,

min

{
k∑

i=1

|wi |
∣∣∣f =

k∑
i=1

wi gi , wi ∈ R, gi ∈ G

}
. (2)

The quantity (2) can be studied in terms of a concept
of variational norm from nonlinear approximation theory.
For a bounded subset G of a normed linear space (X , ‖.‖),
G-variation (variation with respect to the dictionary G),
denoted by ‖.‖G, is defined as

‖f ‖G := inf

{
c ∈ R+

∣∣∣ f

c
∈ clX conv (G ∪ −G)

}
,

where − G := {− g | g ∈ G}, clX denotes the closure with
respect to the topology induced by the norm ‖·‖X , and conv
is the convex hull. Variation with respect to Heaviside per-
ceptrons (called variation with respect to half-spaces) was
introduced by Barron [2] and extended to general dictionar-
ies by Kůrková [21]. For properties of variational norm and

its role in estimates of rates of approximation, see, e.g., [13,
16, 19, 22, 23, 28].

The next proposition, which follows easily from the
definition, shows the role of G-variation in estimates of
l1-sparsity.

Proposition 2 Let G be a finite subset of (X , ‖.‖) with card
G = k. Then, for every f ∈ X

‖f ‖G = min

{
k∑

i=1

|wi |
∣∣∣f =

k∑
i=1

wi gi , wi ∈ R, gi ∈ G

}
.

Thus, any representation of a function with “large” G-
variation by a shallow network with units from a dictionary
G must have “large” number of units and/or absolute values
of some output weights must be “large”.

By Proposition 2, G-variation of a function is equal to
the smallest l1-norm of an output weight vector in a shallow
network representing the function. Moreover, G-variation
is related to sparsity measured by the minimal number of
nonzero coefficients in a representation of a functions as an
input-output function of given type of shallow network.

The following theorem is a reformulation of Maurey-
Jones-Barron’s theorem [3] in terms of a variational norm
from [21, 23]. As in this paper we focus on dictionaries
on finite domains X, we state the theorem for finite dimen-
sional Hilbert spaces F(X) which is isomorphic to the finite
dimensional Euclidean space R

cardX.

Theorem 1 Let X ⊂ R
d be finite, G be a finite subset of

F(X), sG = maxg∈G ‖g‖, and f ∈ F(X). Then for every
n, there exists a function fn ∈ spann G such that

‖f − fn‖ ≤ sG ‖f ‖G√
n

.

Theorem 1 shows the relationship between sparsity
expressed in terms of l1-norm and “l0-pseudo-norm”. A
function f can be approximated within an error at most ‖f ‖G√

n

by a function computable by a shallow network with units
from G with at most n nonzero output weights. Classes
of d-variable functions with G-variations growing with d
polynomially are of particular interest [16, 29].

In Hilbert spaces (in particular in the finite dimensional
space F(X)), ‖.‖G can be investigated geometrically in
terms of angles between the function f and functions from
the dictionary G. The following theorem from [31] (see also
[23] for a more general version) shows that lower bounds
on G-variation of a function f can be obtained by estimat-
ing correlations of f with functions from the dictionary G.
By G⊥ is denoted the orthogonal complement of G in the
Hilbert space F(X).
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Theorem 2 Let X be a finite subset of Rd and G be a
bounded subset of F(X). Then for every f ∈ F(X) \ G⊥,

‖f ‖G ≥ ‖f ‖2

supg∈G|〈g, f 〉| .

Theorem 2 shows that functions which are almost orthog-
onal to all elements of a dictionary G have large variations
with respect to G. We will use it as a tool for derivation of
lower bounds on G-variation.

4 Shallow networks with signum perceptrons

It was shown by Ito [15], that the dictionary of perceptrons
with any sigmoidal activation function satisfies the assump-
tions of Proposition 1. Thus, one-hidden-layer Heaviside
as well as signum perceptron networks have the universal
representation property.

From the point of view of the number of network units,
there is only a minor difference between networks with
signum and Heaviside perceptrons as

sgn(t) = 2ϑ(t) − 1 and ϑ(t) = sgn(t) + 1

2
. (3)

An advantage of signum perceptrons is that they all have
the same norms equal to

√
cardX, where X is the domain.

Thus, in some arguments concerning computations of func-
tions on finite domains, it is more convenient to consider
signum perceptrons than Heaviside ones.

The dictionary of signum perceptrons

Pd(X) := {sgn(v · x + b) : X → {−1, 1} | v ∈ R
d , b ∈ R}

occupies a relatively small subset of the set B(X) of all func-
tions on X with values in {−1, 1}. The size of Pd(X) grows
with increasing size m of the domain X only polynomially
(the degree of the polynomial is the dimension d of the space
R

d where X is embedded), while the size 2m of the set B(X)

of all functions from X to {−1, 1} grows with m exponen-
tially. The following upper bound is a direct consequence
of an upper bound on the number of linearly separable
dichotomies of m points in R

d from [10] combined with a
well-known estimate of partial sum of binomials (see [30]).

Theorem 3 For every d and every X ⊂ R
d with cardX =

m,

card Pd(X) ≤ 2
md

d! .

In [30], combining the probabilistic Chernoff bound, the
geometric lower bound on variational norm from Theorem 2,
and the relatively small size of the dictionary Pd(X), we
proved the following theorem.

Theorem 4 Let d be a positive integer, X ⊂ R
d with card

X = m, f uniformly randomly chosen in B(X), and b > 0.
Then,

Pr
(‖f ‖Pd(X) ≥ b

) ≥ 1 − 4
md

d! e
− m

2b2 .

Thus, for large domains X, almost any uniformly ran-
domly chosen function from X to {−1, 1} has large variation
with respect to signum perceptrons and so it cannot be
l1-sparsely represented by a shallow network with signum

perceptrons. In particular, for card X = 2d and b = 2
d
4 ,

Theorem 4 implies the following corollary.

Corollary 1 Let d be a positive integer, X ⊂ R
d with card

X = m, and f uniformly randomly chosen in B(X). Then,

Pr
(
‖f ‖Pd(X) ≥ 2

d
4

)
≥ 1 − 4

2d2

d! e−(2
d
2 −1).

Corollary 1 shows that almost all uniformly randomly
chosen functions on the d-dimensional Boolean cube {0, 1}d
cannot be computed by shallow signum perceptron net-
works with the sum of absolute values of output weights
depending on d polynomially.

Theorem 4 is existential. It proves that there exists a lot of
functions which cannot be l1-sparsely represented by shal-
low signum perceptron networks, but it does not suggest
how to construct such functions.

5 Lower bounds on variational norms with respect
to perceptrons

In this section, we complement the existential probabilis-
tic Theorem 4 by a concrete construction of a class of
binary-valued functions having relatively large variations
with respect to signum perceptrons. We prove that for large
domains such functions cannot be computed by shallow net-
works with small numbers of signum perceptrons and small
sizes of output weights.

By Theorem 2, functions which are nearly orthogonal to
all elements of a dictionary G have large G-variations. Thus,
our aim is to construct functions which are nearly orthogo-
nal to all signum perceptrons. It is quite difficult to estimate
inner products of functions on large finite domains formed
by points in R

d in general positions. To simplify our task,
we focus on functions on square domains

X = {x1, . . . , xn} × {y1, . . . , yn} ⊂ R
d

formed by points in grid-like positions. For example, pix-
els of pictures in R

d as well as digitized high-dimensional
cubes can form such square domains.
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Functions on square domains can be represented by
square matrices. For a function f on X = {x1, . . . , xn} ×
{y1, . . . , yn}, we denote by M(f ) the n × n matrix defined
as

M(f )i,j = f (xi, yj ).

On the other hand, an n×n matrix M induces a function fM

on X such that

fM(xi, yj ) = Mi,j .

The following lemma shows that the geometrical shape
of the square domain guarantees that matrices M(g) repre-
senting signum perceptrons g ∈ Pd(X) can be reordered in
such a way that each row and each column of the reordered
matrix starts with a segment of −1’s followed by a segment
of +1’s (for proof see the Appendix).

Lemma 1 Let d = d1 + d2, {xi | i = 1, . . . , n} ⊂ R
d1 ,

{yj | j = 1, . . . , n} ⊂ R
d2 , and X = {x1, . . . , xn} ×

{y1, . . . , yn} ⊂ R
d . Then for every g ∈ Pd(X), there exists

a reordering of rows and columns of the n × n matrix M(g)

such that in the reordered matrix, each row and each col-
umn start with a (possibly empty) initial segment of −1’s
followed by a (possibly empty) segment of +1’s.

The inner product of two functions f and g on a square
domain X = {x1, . . . , xn}×{y1, . . . , yn} is equal to the sum
of entries of the matrices M(f ) and M(g), i.e.,

〈f, g〉 =
∑n

i,j
M(f )i,jM(g)i,j ,

and thus, it is invariant under permutations of rows and
columns performed jointly on both matrices M(f ) and
M(g). So to estimate inner products of functions repre-
sented by matrices, we can reorder rows and columns
whenever it is convenient. In particular, we can use reorder-
ings of matrices induced by signum perceptrons guaranteed
by Lemma 1.

Signum perceptrons as functions with values in {−1, 1}
induce matrices with entries equal to −1 or +1. The reorder-
ing assembling −1’s and +1’s in the matrix representing a
signum perceptron (guaranteed by Lemma 1) reduces esti-
mation of their inner products with functions f : X →
{−1, 1} to estimation of differences of −1’s and +1’s
in submatrices of M(f ). To obtain small inner products,
we need matrices whose submatrices have relatively small
differences of −1’s and +1’s.

One class of such matrices is formed by Hadamard matri-
ces. A Hadamard matrix of order n is an n×n square matrix
M with entries in {−1, 1} such that any two distinct rows
(or equivalently columns) of M are orthogonal. It follows
directly from the definition that this property is invariant
under permutations of rows and columns and sign flips of all
elements in a row or a column. Note that Hadamard matrices

were introduced as extremal ones among all n × n matrices
with entries in {−1, 1} as they have the largest determi-
nants equal to

√
n. The well-known Lindsay Lemma bounds

from above differences of +1’s and −1’s in submatrices of
Hadamard matrices (see, e.g., [11, p. 88]).

Lemma 2 (Lindsay) Let n be a positive integer and M be
an n × n Hadamard matrix. Then for any subset I of the set
of indices of rows and any subset J of the set of indices of
columns of M,∣∣∣∣∣∣
∑
i∈I

∑
j∈J

Mi,j

∣∣∣∣∣∣ ≤ √
n card I card J .

Our main theorem shows that functions induced by
Hadamard matrices of large orders have large variations
with respect to signum perceptrons.

Theorem 5 Let d = d1 + d2, {xi | i = 1, . . . , n} ⊂ R
d1 ,

{yj | j = 1, . . . , n} ⊂ R
d2 , X = {xi | i = 1, . . . , n} ×

{yj | j = 1, . . . , n} ⊂ R
d , and fM : X → {−1, 1}

be defined as fM(xi, yj ) = Mi,j , where M is an n × n

Hadamard matrix. Then,

‖fM‖Pd(X) ≥
√

n

�log2 n� .

A detailed proof is presented in the Appendix. An essen-
tial part of the proof is a construction of a partition of
a matrix induced by a signum perceptron into submatri-
ces which have all entries either equal to +1 or all entries
equal to −1 and application of the Lindsay Lemma to a
corresponding partition of a Hadamard matrix (see Fig 1).

Theorem 5 combined with Proposition 2 implies the
following corollary.

Fig. 1 Partition of the matrix M(g)
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Corollary 2 Let d = d1 + d2, {xi | i = 1, . . . , n} ⊂ R
d1 ,

{yj | j = 1, . . . , n} ⊂ R
d2 , X = {xi | i = 1, . . . , n} ×

{yj | j = 1, . . . , n} ⊂ R
d , and fM : X → {−1, 1}

be defined as fM(xi, yj ) = Mi,j , where M is an n × n

Hadamard matrix. Then fM cannot be computed by a shal-
low signum perceptron network having both the number of
units and absolute values of all output weights depending
on log2 n polynomially.

Corollary 2 shows that functions induced by Hadamard
matrices cannot be computed by shallow networks with
signum or Heaviside perceptrons with numbers of units and
sizes of output weights considerably smaller than sizes of
their domains. Numbers of units and sizes of output weights
in these networks cannot be bounded by polynomials of log2
of the size of their domains.

Theorem 5 can be applied to domains containing suf-
ficiently large squares, for example, domains representing
pictures formed by two-dimensional squares with 2k × 2k

pixels or to digitized d-dimensional cubes.

Corollary 3 Let k be a positive integer and fM : {0, 1}k ×
{0, 1}k → {−1, 1} be defined as fM(xi, yj ) = Mi,j , where
M is a 2k × 2k Hadamard matrix. Then,

‖fM‖Pd({0,1}2k) ≥ 2k/2

k
.

Functions generated by 2k ×2k Hadamard matrices (such
as the function generated by the matrix in the Fig. 2) cannot
be computed by shallow signum perceptron networks with
the sum of the absolute values of output weights bounded
by a polynomial of k. This implies that the numbers of units
and absolute values of all output weights in these networks
cannot be bounded by any polynomial of k.

Similarly, functions defined on 2k-dimensional dis-
cretized cubes of sizes s2k = sk ×sk cannot be computed by

Fig. 2 24 × 24 Sylvester-Hadamard matrix

networks with numbers of signum perceptrons and output
weights smaller than

sk/2

�k log2 s� . (4)

6 Comparison of representations by one
and two-hidden-layer networks

Applying Corollary 2 to a variety of types of Hadamard
matrices, one obtains many examples of functions which
cannot be computed by shallow perceptron networks with
numbers of units and sizes of output weights bounded by

p(log2 card X),

where p is a polynomial and X is the domain of the function.
Recall that if a Hadamard matrix of order n > 2 exists,

then n is divisible by 4 (see, e.g., [33, p. 44]). It is con-
jectured that there exists a Hadamard matrix of every order
divisible by 4. Various constructions of Hadamard matri-
ces are known, such as Sylvester’s recursive construction of
2k × 2k matrices, Paley’s construction based on quadratic
residues, as well as constructions based on Latin squares,
and on Steiner triples.

Two Hadamard matrices are called equivalent when one
can be obtained from the second one by permutations of
rows and columns and sign flips of all entries in a row or
a column. Listings of known constructions of Hadamard
matrices and enumeration of non-equivalent Hadamard
matrices of some orders can be found in [38].

The oldest construction of a class of 2k×2k matrices with
orthogonal rows and columns was discovered by Sylvester
[40]. A 2k × 2k matrix is called Sylvester-Hadamard and
denoted S(k) if it is constructed recursively starting from
the matrix

S(2) =
(

1 1
1 −1

)

and iterating the Kronecker product

S(l + 1) = S(2) ⊗ S(l) =
∣∣∣∣ S(l) S(l)

S(l) −S(l)

∣∣∣∣
for l − 1, . . . , k − 1 (see Fig. 2).

Corollary 3 implies that functions generated by 2k × 2k

Sylvester-Hadamard matrices cannot be represented by
shallow signum perceptron networks with numbers of units

and sizes of output weights smaller than 2k/2

k
.

The following theorem shows that model complexities
of signum or Heaviside perceptron networks computing
functions generated by Sylvester-Hadamard matrices can be
considerably decreased when two hidden layers are used
instead of merely one hidden layer.
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Theorem 6 Let S(k) be a 2k × 2k Sylvester-Hadamard
matrix, hk : {0, 1}k × {0, 1}k → {−1, 1} be defined as
hk(u, v) = S(k)u,v . Then, hk can be represented by a net-
work with one linear output and two hidden layers with k
Heaviside perceptrons in each hidden layer.

The proof of this theorem, given in the Appendix, utilizes
the well-known (and easily verifiable by induction) equiva-
lence of 2k × 2k Sylvester-Hadamard matrix to the matrix
with rows formed by generalized parities pu(v) : {0, 1}k →
{−1, 1} defined as

pu(v) = −1u·v,

see, e.g., [33]. Thus, functions generated by Sylvester-
Hadamard matrices are compositional functions. Inner
products u · v can be computed by the first hidden layer and
the classification of odd and even numbers by the second
hidden layer.

Combining Theorems 6 and 5 with the relationship
between signum and Heaviside perceptrons (3), we obtain
an example of a class of functions on {0, 1}2k which can
be “l0”-sparsely represented by two-hidden-layer Heaviside
perceptron network but cannot be l1-sparsely represented
by a network with merely one hidden layer of Heaviside
perceptrons.

Corollary 4 Let S(k) be a 2k × 2k Sylvester-Hadamard
matrix, hk : {0, 1}k × {0, 1}k → {−1, 1} be defined as
hk(u, v) = S(k)u,v . Then, hk can be represented by a two-
hidden-layer network with k Heaviside perceptrons in each
hidden layer, but every representation of hk by one-hidden-

layer Heaviside perceptron network has at least 2k

k
units,

or some of absolute values of output weights are greater or

equal to 2k

k
.

Although generally, a small “l0-pseudo-norm” does not
imply a small l1-norm, inspection of the proof of Theorem
6 (see the Appendix) shows that the function hk induced by
the 2k × 2k Sylvester-Hadamard matrix can be expressed
as an input-output functions of a two-hidden-layer Heavi-
side perceptron network having both the “l0-pseudo-norm”
and the l1-norm of output weights equal to k. More pre-
cisely, all parameters of the network computing hk are in the
set {0, −1, 1, b}, where b ∈ (1, 2). In particular, all output
weights connecting the k units in the second hidden layer
with the linear output unit are equal either to −1 or to +1.
Thus, the sum of their absolute values is equal to k. On
the other hand, by Theorem 5, the function induced by any
2k × 2k Hadamard marix cannot be computed by a shallow
signum perceptron network with the number of hidden units
as well as the absolute values of all output weights bounded
by any polynomial of k.

7 Discussion

In this paper, we investigated when deep networks are
provably more efficient than shallow ones by comparing
complexities of these two types of architectures. As esti-
mation of minimal numbers of network units needed for a
computation of a given function is a difficult nonconvex
problem, we focused on sparsity defined in terms of the l1-
norms of their output weights. These norms have been used
in weight-decay regularization techniques and are related
to the concept of a variational norm tailored to a type of
computational units which is a crucial factor in estimates
of rates of approximation of functions by shallow networks
with increasing numbers of units [16].

We derived constructive results which complement exis-
tential probabilistic results from [30] showing that almost
any uniformly randomly chosen function on a large domain
cannot be computed by a sparse shallow perceptron net-
work.

Our arguments are based on estimation of correlations
between functions to be computed by a shallow network
and its computational units. This is quite difficult for finite
domains formed by points in a general position. Thus,
we focused on square domains which can represent, e.g.,
pixels of two-dimensional pictures or digitized cubes of
even dimensions. Describing such functions as matrices, we
proved that functions induced by Hadamard matrices are
not correlated with any signum perceptron. We showed that
these functions cannot be computed by shallow signum per-
ceptron networks with both numbers of units and sizes of
output weights bounded by polynomials of logarithm of
the size of the domain. Thus, many concrete examples of
functions which cannot be sparsely represented by shallow
signum perceptron networks can be obtained from listings
of Hadamard matrices (e.g., [38]).

In particular, our results imply that functions induced by
Hadamard matrices on d-dimensional Boolean cubes cannot
be computed by shallow perceptron networks with numbers
of units and output weights depending on d polynomi-
ally. To compare one- and two-hidden-layer networks, we
showed that functions induced by a subclass of Hadamard
matrices formed by 2k × 2k Sylvester-Hadamard matrices
can be computed by two-hidden-layer networks with merely
k perceptrons in each hidden layer. The representation of
Sylvester-Hadamard matrices as two-hidden-layer percep-
tron network is due to their compositional structure and
thus cannot easily be extended to other types of Hadamard
matrices.

Although for large domains, almost any uniformly ran-
domly chosen function has a large variation with respect
to perceptrons [30], it is not easy to find examples of such
functions. We constructed a class of such functions gener-
ated by matrices with rather extreme properties. However,
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it is quite likely that many classification tasks of real data
can be represented by functions which can be computed by
reasonably small shallow networks. Deep networks seem
to be more efficient than shallow ones in tasks which can
be naturally described in terms of compositional functions.
Such functions can be suitable for description of visual
recognition tasks.
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Appendix

Proof of Lemma 1 Choose an expression of g ∈ Pd(X) as
g(z) = sign(a · z + b), where z = (x, y) ∈ R

d1 × R
d2 , a ∈

R
d = R

d1 × R
d2 , and b ∈ R. Let al and ar denote the left

and the right part, resp, of a, i.e., ali = ai for i = 1, . . . , d1

and ari = ad1+i for i = 1, . . . , d2. Then, sign(a · z + b) =
sign(al ·x+ar ·y+b). Let ρ and κ be permutations of the set
{1, . . . , n} such that al · xρ(1) ≤ al · xρ(2) ≤ . . . ≤ al · xρ(n)

and ar · yκ(1) ≤ ar · yκ(2) ≤ . . . ≤ ar · yκ(n).
Denote by M(g)∗ the matrix obtained from M(g) by

permuting its rows and columns by ρ and κ , resp. It fol-
lows from the definition of the permutations ρ and κ that
each row and each column of M(g)∗ starts with a (possi-
bly empty) initial segment of −1’s followed by a (possibly
empty) segment of +1’s.

Proof of Theorem 5 By Theorem 2,

‖fM‖Pd(X) ≥ ‖fM‖2

supg∈Pd(X)|〈fM, g〉| =
n2

supg∈Pd(X)|〈fM, g〉 |.
(5)

The inner product of fM with g is equal to the sum
of entries of the matrices M and M(g), i.e., 〈fM, g〉 =∑n

i,jMi,jM(g)i,j , and so it is invariant under permutations
of rows and columns performed simultaneously on both
matrices M and M(g).

Thus, without loss of generality, we can assume that each
row and each column of M(g) starts with a (possibly empty)
initial segment of −1’s followed by a (possibly empty) seg-
ment of +1’s. Otherwise, we reorder rows and columns
in both matrices M(g) and M applying permutations from
Lemma 1.

To estimate 〈fM, g〉 = ∑n
i,j=1Mi,jM(g)i,j , we define

a partition of the matrix M(g) into a family of submatri-
ces such that each submatrix from the partition of M(g) has
either all entries equal to −1 or all entries equal to +1 (see
Fig. 1). We construct the partition of M(g) as a union of
sequence of families of submatrices (possibly some of them
empty)

P(g, k) = {P(g, k, 1), . . . , P (g, k, 2k)}, k = 1, . . . , �log2 n�,
defined recursively. To construct it, we also define an
auxiliary sequence of families of submatrices

Q(g, k) = {Q(g, k, 1), . . . , Q(g, k, 2k)}, k = 1, . . . , �log2 n�,
such that for each k,

{P(g, k, 1), . . . , P (g, k, 2k), Q(g, k, 1), . . . , Q(g, k, 2k)}
is a partition of the whole matrix M(g).

First, we define P(g, 1) = {P(g, 1, 1), P (g, 1, 2)}
and Q(g, 1) = {Q(g, 1, 1), Q(g, 1, 2)}. Let r1,1 and c1,1

be such that the submatrix P(g, 1, 1) of M(g) formed by
the entries from the first r1,1 rows and the first c1,1 columns
of M(g) has all entries equal to −1 and the submatrix
P(g, 1, 2) by the entries from the last r1,2 = n − r1,1

rows and the last c1,2 = n − c1,1 of M(g) has all entries
equal to +1. Let Q(g, 1, 1) be the submatrix formed by
the last r1,2 = n − r1,1 rows and the first c1,1 columns of
M(g) and Q(g, 1, 2) be the the submatrix formed by the
first r1,2 rows and the last c1,2 = n − c1,1 columns. So
{P(g, 1, 1), P (g, 1, 2), Q(g, 1, 1), Q(g, 1, 2)} is a partition
of M(g) into four submatrices (see Fig. 1).

Now, assume that the families P(g, k) and Q(g, k) are
constructed. To define P(g, k + 1) and Q(g, k + 1), we
divide each of 2k submatrices Q(g, k, j), j = 1, . . . , 2k

into four submatrices: P(g, k + 1, 2j − 1), P(g, k + 1, 2j),
Q(g, k+1, 2j−1), and Q(g, k+1, 2j) such that each of the
submatrices P(g, k + 1, 2j − 1) has all entries equal to −1
and each of the submatrices P(g, k + 1, 2j) has all entries
equal to +1.

Iterating this construction at most �log2 n� times, we
obtain a partition of M(g) formed by the union of fami-
lies of submatrices P(g, k). It follows from the construction
that for each k, the sum of the numbers of rows {rk,t | t =
1, . . . , 2k} and the sum of the numbers of columns {ck,t | t =
1, . . . , 2k} of these submatrices satisfy

2k∑
t=1

rk,t = n and
2k∑
l=1

ck,t = n.

Let P(k) = {P(k, 1), . . . , P (k, 2k)} be the family of
submatrices of M formed by the entries from the same rows
and columns as corresponding submatrices from the family
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P(g, k) = {P(g, k, 1), . . . , P (g, k, 2k)} of submatrices of
M(g).

To derive an upper bound on |〈fM, g〉|, we express it as

|〈fM, g〉| =
∣∣∣∣∣∣

n∑
i,j

Mi,jM(g)i,j

∣∣∣∣∣∣
=

∣∣∣∣∣∣
�log2 n�∑

k=1

2k∑
t=1

P(k, t)i,j P (g, k, t)i,j

∣∣∣∣∣∣ . (6)

As all the matrices P(k, t) are submatrices of the
Hadamard matrix M, by the Lindsay Lemma 2 for each
submatrix P(k, t),∣∣∣∣∣∣
rk,t∑
i=1

ck,t∑
j=1

P(k, t)i,j

∣∣∣∣∣∣ ≤ √
n rk,t ck,t .

All the matrices P(g, k, t) have all entries either equal to
1 or all entries equal to −1. Thus,∣∣∣∣∣∣
rk,t∑
i=1

ck,t∑
j=1

P(k, t)i,j P (g, k, t)i,j

∣∣∣∣∣∣ ≤ √
n rk,t ck,t .

As for all k,
∑2k

t=1rk,t = n and
∑2k

t=1ck,t = n, we obtain
by the Cauchy-Schwartz inequality

2k∑
t=1

√
rk,t ck,t ≤ n.

Thus, for each k,

2k∑
t=1

|P(k, t)i,j P (g, k, t)i,j | ≤
2k∑

t=1

√
n rk,t ck,t ≤ n

√
n.

Hence, by (6),

|〈fM, g〉| ≤
�log2 n�∑

k=1

∣∣∣∣∣∣
2k∑

t=1

P(k, t)i,j P (g, k, t)i,j

∣∣∣∣∣∣ ≤ n
√

n �log2 n�.

So by (5),

‖fM‖Pd(X) ≥ n2

n
√

n �log2 n� ≥
√

n

�log2 n�

Proof of Theorem 6 Any 2k × 2k Sylvester-Hadamard
matrix S(k) is equivalent to the matrix M(k) with rows and
columns indexed by vectors u, v ∈ {0, 1}k and entries

M(k)u,v = −1u·v

(see, e.g., [33]). Thus, without loss of generality, we can
assume that S(k)u,v = −1u·v (otherwise, we permute rows
and columns).

To represent the function hk : {0, 1}k×{0, 1}k → {−1, 1}
by a two-hidden-layer network, we first define k Heaviside

perceptrons from the first hidden layer. Choose any bias b ∈
(1, 2) and define input weights ci = (ci,l , ci,r ) ∈ R

k × R
k ,

i = 1, . . . , k, as cil
j = 1 and cir

j = 1 when j = i, otherwise

cil
j = 0 and cir

j = 0. So for an input vector x = (u, v) ∈
{0, 1}k × {0, 1}k , the output yi(x) of the i-th perceptron in
the first hidden layer satisfies yi(x) = ϑ(ci · x − b) = 1
if and only if both ui = 1 and vi = 1; otherwise, yi(x) is
equal to zero.

Let w = (w1, . . . , wk) be such that wj = 1 for all j =
1, . . . , k. In the second hidden layer, define k perceptrons by
zj (y) := ϑ(w · y − j + 1/2). Finally, for all j = 1, . . . , k,
let the j-th unit from the second hidden layer be connected
with one linear output unit with the weight (−1)j .

The two-hidden-layer network obtained in this way com-
putes the function

∑k
j=1(−1)jϑ(w · y(x) − j + 1/2),

where yi(x) = ϑ(ci · x − b), i.e., it computes the function∑k
j=1(−1)jϑ

(∑d/2
i=1ϑ(ci · x − b) − j + 1/2

)
= hk(x) =

hk(u, v) = −1u·v .
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