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Abstract

Best approximation by the set of all n-fold linear combinations of a family of characteristic functions
of measurable subsets is investigated. Such combinations generalize Heaviside-type neural networks.
Existence of best approximation is studied in terms of approximative compactness, which requires
convergence of distance-minimizing sequences. We show that for (Ω , µ) a measure space, in L p(Ω , µ)
with 1 ≤ p ≤ ∞ and for all n ≥ 1, compact families of characteristic functions of sets (of finite measure
for p < ∞) generate approximatively compact n-fold linear spans. Results are illustrated by examples
of continuously parametrized sets.
c⃝ 2020 Elsevier Inc. All rights reserved.
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1. Introduction

The theory of neural networks overlaps with approximation theory. Feedforward networks
can be formally described as parametrized families of functions, and tools of approximation
theory can be used to assess the capabilities of such networks (or, rather, of the sets of functions
they encode) to efficiently approximate functions of interest (see, e.g., [17,20]). Properties like
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existence, uniqueness, and accuracy of approximation operators (and, at given accuracy, the
rate at which number of units increases with increasing number of network parameters) can
help selection of proper computational models.

In traditional perceptron-type one-hidden-layer neural networks, the output signal y is a
linear combination of parametrized functions acting on the input x = (x1, . . . , xd ) ∈ Rd , i.e.,

y =

n∑
j=1

c jσ

(
d∑

i=1

w j i · xi + w j0

)
, (1)

where c j and w j i are real weights, n is the number of computational units, and σ is a non-
decreasing activation function. This activation function is often equal to, or an approximation
to, the Heaviside function ϑ(t), which is 1 for t ≥ 0 and 0 for t < 0. For neural networks
with the Heaviside activation, dependence of y on x is expressed by a linear combination of
characteristic (indicator) functions of half-spaces. These half-spaces may have finite measure
for an appropriate measure or if inputs x are restricted to compact subsets. Our results show
that characteristic functions of balls, ellipsoids, or polytopes can replace Heavisides as the
activation functions, with similar approximation properties.

Training a neural network can be seen as optimizing the parameters (weights) in order to
obtain a good approximation to target functions by the corresponding input–output functions.
Typically, an L2 norm is used to measure this closeness. To avoid over-fitting and to decrease
vulnerability to outliers, other L p norms may also be used.

A basic question in approximation theory is whether one can achieve best approximation to
some element of the ambient function space by members of a given subset. Existence of a best
approximation has been formalized by the concept of proximinal set (sometimes also called
existence set) and existence of unique best approximation by the concept of Chebyshev set. A
sufficient condition for proximinality is compactness. But compactness can be replaced with
a weaker property, which requires only some sequences to have convergent subsequences —
the ones which minimize distance to a set. This property, called approximative compactness,
was introduced in [6] as a tool for exploring the geometry of Banach spaces. Approximative
compactness implies proximinality, but the converse is not true. Indeed, in the unit sphere in an
infinite-dimensional Hilbert space, all elements are at minimum distance from zero but there are
sequences with no convergent subsequence. It was shown in [6] that for a Chebyshev subset
of a smooth and uniformly convex Banach space, approximative compactness is equivalent
to convexity. For example, the set of rational functions of given degrees of numerators and
denominators is approximatively compact in L p([0, 1]), p ∈ (1, ∞), but is not boundedly
compact and the (non-convex) families of fixed-degree rational functions cannot be Chebyshev
sets [25, pp. 368–372], [5].

For neural networks based on the Heaviside function, we proved in [14] the
best-approximation property: for every function f ∈ L p([0, 1]d ) with p ∈ [1, ∞) and every
n, there exist values of the weights for which the corresponding distance is the smallest (there
may be several different combinations of weights providing the best approximation). However,
while minimum distance is achievable, no such best (or even near best) approximation mapping
is continuous [12,13].

In this paper we investigate best approximation by sets of n-fold linear combinations of
characteristic functions of sets of finite measure. When the family of characteristic functions is
compact in L p(Ω , µ) with p ∈ [1, ∞], it is shown here that the set of all linear combinations
of n elements is approximatively compact — and hence has the best approximation property.
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Compact sets of characteristic functions in L p can be obtained from continuously
parametrized families restricted to a compact subset of parameter space. Another method to
generate compact families of characteristic functions is to use continuous mappings from the
set of all compact convex non-empty subsets of Rd , with Hausdorff metric ρH , to the set of
all finite-λ-measure subsets of Rd under the symmetric difference metric ρ∆. Its continuity
follows from results in [7,23].

The relationship between ρH and ρ∆ yields easy arguments for the compactness of various
families of compact convex subsets of Rd . For example, the set of characteristic functions of
polytopes, with at most k extreme points all in a prescribed compact subset of Rd , is compact
in L p, p ∈ [1, ∞).

Our work evolved from Kůrková [16], where it is shown that families of n-fold linear
combinations of characteristic functions of half-spaces are closed in L p([0, 1]d , λ), p ∈ (1, ∞).
In this paper we allow p ∈ [1, ∞] and generalize and extend Gurvits and Koiran [8] and earlier
work of ours in [14]. Examples are given of compact G of the proper type for the case of a
locally compact topological group with Haar measure, mostly when (Ω , µ) = (Rd , λ), where
λ denotes Lebesgue measure.

The paper is organized as follows: Section 2 contains notation and background material and
includes a “virtual convergence” lemma from [14]. Section 3 states our main theorem with
some corollaries and remarks while Section 4 contains the proof. Section 5 has Theorem 2 and
gives examples, while Section 6 contains a discussion and states open problems.

2. Background and notation

Let N+ denote the set of all positive integers, and for n ∈ N+, [n] := {1, . . . , n}. For any
nonempty set S, let P(S) denote the set of all subsets of S. For two sets A and B the symmetric
difference A∆ B is the set (A ∪ B) \ (A ∩ B). For Ω a set and S ⊆ Ω , the characteristic (or
“indicator”) function of S is the 0-1-function χS : Ω → {0, 1}, with χS(x) = 1 iff x ∈ S. Note
that χ∅ is the zero-function on Ω , where ∅ denotes the empty subset, and for all A, B ⊆ Ω ,
we have the following equalities

max{χA, χB} = χA∪B, min{χA, χB} = χA∩B = χA χB and |χA − χB | = χA∆ B . (2)

For any non-empty subset G of a real vector space and n ≥ 1 a fixed integer, the set of all
n-fold linear combinations of elements from G is denoted

spann(G) :=

{
n∑

i=1

ci gi : ci ∈ R, gi ∈ G

}
.

In the following result, from [14], if {a jk} converges, then a j is its limit.

Lemma 1. Let U be any family of subsets of [n] and {a jk}
∞

k=1, 1 ≤ j ≤ n, be a sequence in
Rn . If for each S in U , there exists a real number cS ∈ R such that

cS = lim
k→∞

{∑
j∈S

a jk

}
,

then there exist real numbers a1, . . . , an such that for all S in U

cS =

∑
j∈S

a j .
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Proof. If U = ∅, the result holds vacuously. Otherwise, the (finite-dimensional) linear opera-
tor

(x1, . . . , xn) ↦→

⎛⎝∑
i∈S1

xi , . . . ,
∑
i∈Sm

xi

⎞⎠
has closed range, where U = {S1, . . . , Sm} for m = |U | ≥ 1. ■

2.1. Approximative compactness

Let (X, s) be a metric space. Then the sequence {xk} ⊂ X converges subsequentially to
y in X if there is a subsequence of {xk} which converges to y. For x ∈ X and M ⊂ X , let
s(x, M) := infm∈M s(x, m). If the metric is determined by a norm ∥ · ∥, then ∥x − M∥ :=

s(x, M). The subset M is called proximinal (an “existence set”) if ∀x ∈ X , ∃y ∈ M s.t.
s(x, y) = s(x, M). For x ∈ X , an x-distance-minimizing sequence in M is a sequence {mk}

in M such that

lim
k→∞

s(x, mk) = s(x, M);

M is approximatively compact if for every element x in X and x-distance-minimizing
sequence {mk} in M , there exists a point m∞ of M to which {mk} converges subsequentially.
The point m∞ is a best approximant to f . A subset of X is boundedly compact if its
intersection with any bounded set has compact closure. With obvious abbreviations, for any
subset of X ,

compact H⇒ (b.c. and closed) H⇒ a.c. H⇒ prox.

H⇒ closed (w.r.t. metric − induced topology).

See Singer [25, p. 365, pp. 382–384].
It is well known that in metric spaces (Simmons [24, p. 124]) compactness is equivalent

to sequential compactness (every infinite sequence contains a convergent subsequence). It
follows that for all x ∈ X , the projection set of x in M

ΠM (x) := {y ∈ M : s(x, y) = s(x, M)}

(the set of best approximants) is compact when M is approximatively compact.
Since our approach involves the interplay between compactness and approximative com-

pactness, it is natural to ask which operations preserve compactness and approximative
compactness. For instance, the Minkowski sum A + B and the Cartesian product A × B of
compact sets A and B is compact. For a class of Banach spaces including those which are
uniformly convex, Efimov and Stechkin [6] showed that weakly closed sets are approximatively
compact and approximative compactness of M implies that of the closed ε-neighborhood M(ε).
Pyatyshev [21] proved that the closure of the Minkowski sum of two a.c. sets may not be a.c.
and that the Minkowski sum of an a.c. set with a compact set is again a.c. Kainen [11] showed
that, in an F-space (and so in a normed linear space), if M is a.c. and C is compact, then both
the Minkowski sum M +C and the Cartesian product M ×C are a.c., and the metric projection
ΠM (C) of C to M is compact.
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2.2. Measure spaces and metric spaces

In any metric space, let B(x, r ) be the closed ball centered at x with radius r ≥ 0. In a
normed linear space, put Br := B(0, r ). A pseudometric satisfies the axioms of a metric, except
that two distinct points can have distance zero. By defining an equivalence relation (having zero
distance), one passes to a quotient space which is a metric space. If s and s ′ are two different
(pseudo)metrics for a set X , then (X, s) ∼= (X, s ′) means that s and s ′ are equivalent, i.e., they
induce the same topology on X . The next lemma is well-known (e.g., Kelley [15, p. 131]).

Lemma 2. Let (X, s) be a metric space with F : [ 0, ∞) → R continuous, nondecreasing,
and subadditive such that F(x) = 0 iff x = 0. Then (X, F ◦ s) is a metric space equivalent to
(X, s).

As in Halmos [9], a σ -ring in a set Ω is a family of subsets of Ω closed under set-difference
and countable unions. A measurable pair is a pair (Ω , S) where Ω =

⋃
S and S is a σ -ring.

A measure on (Ω , S) is a function µ from S to [0, ∞] which is countably additive and assigns
measure zero to the empty set. We write (Ω , µ), or (Ω , S, µ) if the σ -ring S needs to be
specified.

Given any class E of subsets of Ω , there is a unique smallest σ -ring S(E) containing E
[9, p. 24]. Now suppose that Ω is a locally compact Hausdorff topological space. A Borel set
is any member of S(C), where C is the family of all compact subsets of Ω . A Borel measure
is a measure µ defined on the class of all Borel sets such that µ(C) < ∞ for every C ∈ C
[9, p. 223].

A Borel measure µ is regular if for each Borel set E , we have

sup{µ(C) : E ⊇ C, C is compact} = µ(E) = inf{µ(U ) : E ⊆ U, U open}.

For a measure space (Ω , µ), the associated metric space S(Ω , µ) [9, p. 168] is the set of
all (equivalence classes of) subsets of Ω which are µ-measurable with finite measure, with
the distance between two such sets E and F equal to the measure of their symmetric dif-
ference

ρ∆(E, F) := µ(E∆F).

We identify two subsets of Ω with symmetric difference of measure zero.
When Ω is a locally compact topological group (necessarily Hausdorff by [9, p. 6]), a

nonzero Borel measure µ on Ω is called a Haar measure if it is left-invariant, i.e.,

µ(x E) = µ(E), (3)

where x E = {xy : y ∈ E}, xy denotes the group operation for x ∈ Ω , and E is a Borel subset
of Ω .

2.3. L p-spaces and characteristic functions

Let (Ω , µ) be a measure space and let p ∈ [1, ∞). Then L p
:= L p(Ω , µ) is the set of

equivalence classes of measurable functions f : Ω → R whose pth power is absolutely
integrable, so f is in L p iff∫

Ω

| f |
p

:=

∫
Ω

| f |
p dµ :=

∫
Ω

| f (x)|p µ(dx) < ∞
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where functions are equivalent if they agree except for a set of measure zero. For 1 ≤ p < ∞,
the L p-norm is the pth root of this integral ∥ f ∥p = (

∫
| f |

p)1/p. The set of (equivalence classes
of) functions with absolute values having finite essential sup is denoted L∞

:= L∞(Ω , µ) and
∥ f ∥∞ := ess sup(| f |). For f ∈ L p(Ω , S, µ), p ∈ [1, ∞), and A ∈ S, one defines an integral
over A by

∫
A f :=

∫
Ω f χA.

For p ∈ [1, ∞] and letting functions denote their equivalence class modulo sets of µ-
measure zero, we introduce notation used repeatedly below. With [ f ] denoting the equivalence
class of f ,

L p
χ := L p

χ (Ω , µ) := {[χA] : A measurable} ∩ L p (4)

is the metric space with the L p metric dp. By (2), for all A, B ∈ S(Ω , µ) and p ∈ [1, ∞),

dp(χA, χB) := ∥χA − χB∥p = µ(A∆ B)1/p. (5)

Hence, for p < ∞, since F(t) := t1/p satisfies Lemma 2, we have shown the equivalence
of the L1 and L p metrics for characteristic functions of (finite-measure) sets. This proves the
second half of the next lemma; the first half is by definition.

Lemma 3. L1
χ is isometric to (S(Ω , µ), ρ∆) and for p ∈ [1, ∞), L1

χ
∼= L p

χ .

The space L∞
χ consists of the set of all equivalence classes of characteristic functions of

measurable subsets of Ω , not just those of finite measure, under essential-sup norm; hence, it
is a discrete space with the 0/1 distance.

3. Main theorem and its consequences

We state our theorem on the approximative compactness of spann(G). Before giving the
proof, we provide some corollaries and instantiate the concepts.

Theorem 1. Let p ∈ [1, ∞]. For a measure space (Ω , µ), if G ⊂ L p
χ (Ω , µ) is compact, then

for n ∈ N+, spann(G) is approximatively compact.

Observe that the condition of 0/1 values is inessential for the members of G provided the
norms are bounded away from ∞ and 0. For p ∈ [1, ∞), we call G ⊂ L p rescalable to 0/1
if for each g ∈ G, there exists a real number νg and a measurable subset Ωg ⊂ Ω of finite
measure such that g = νgχΩg , where infg∈G{|νg|} > 0. Let Gν

:= {g/νg : g ∈ G}. Then Gν is
compact if G is.

Corollary 1. For p ∈ [1, ∞), let G ⊂ L p(Ω , µ) be compact and rescalable to 0/1. Then for
n ∈ N+, spann(G) is approximatively compact in L p(Ω , µ).

Proof. Theorem 1 implies spann(Gν) is approximatively compact and spann(G) =

spann(Gν). ■

The conclusion of Theorem 1 can also hold when G is non-compact. Indeed, Gν may be
compact when G is not. Let Γ be the family

Γ :=

{
χ[0,1+

1
n ] : n ∈ N+

}
=

{
χ[0,2], χ[0,3/2], χ[0,4/3], . . .

}
.

For c any real number, define Γc := Γ ∪ {cχ[0,1]}. Then in L p(R, λ), for p ∈ [1, ∞), (i) Γc is
compact iff c = 1, (ii) (Γc)ν = Γ1 for c ̸= 0, and (iii) spann(Γc) = spann(Γ1) is approximatively
compact for c ̸= 0.
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For another example, put G = {χ[n,n+1] : n ∈ Z}. This G is a non-compact subset of
L p(R, λ) for 1 ≤ p ≤ ∞. While spann(G) is approximatively compact for p < ∞, it is
not approximatively compact if p = ∞ as the set of nearest neighbors of any nonzero constant
is not compact.

Proposition 1. Let G be a compact subset of a normed linear space (X, ∥ · ∥) and suppose
that either 0 /∈ G or 0 is an isolated point in G. Then span1(G) is approximatively compact.

Proof. Let x be any element in X and let t := ∥span1(G) − x∥ denote the distance from
x to span1(G). Suppose that ∥λngn − x∥ → t . If {gn} → 0, then {gn} is equal to 0 for all
sufficiently large n and the distance-minimizing sequence λngn is eventually equal to zero.
Otherwise, choose δ > 0 such that δ ≤ infn≥1 ∥gn∥. For C > 0 an arbitrary constant, choose
N so large that for all n ≥ N , we have ∥λngn − x∥ ≤ C + t . It follows that for all n ≥ N ,

|λn|δ ≤ |λn|∥gn∥ ≤ ∥λngn − x∥ + ∥x∥ ≤ C + t + ∥x∥

so |λn| ≤ (C + t + ∥x∥)/δ. As the sequence {λn} is bounded, it converges subsequentially to
λ0, while {gn} → g0, and ∥λ0g0 − x∥ = ∥span1(G) − x∥. ■

We exhibit an example of a compact set G for which span1(G) is not approximatively
compact. Let G := {(x, y) : (x − 1)2

+ y2
= 1} ⊂ R2. Then span1(G) = {(x, y) : x ̸=

0} ∪ {(0, 0)}, which is not closed and hence not approximatively compact. Section 6 contains
a generalization of this example.

4. Proof of the main theorem

Case 1: p = ∞. The essential sup of the difference between two non-equivalent char-
acteristic functions is 1, so L∞

χ has the 0/1-metric. Hence, if G is an L∞-compact family
of characteristic functions, then G is finite, so spann(G) is a finite union of finite dimen-
sional spaces. A finite-dimensional Banach space is boundedly compact and closed, thus
approximatively compact; approximative compactness is obviously preserved under finite
unions.

Case 2: p ∈ [1, ∞). Let f ∈ L p and let there exist a jk ∈ R, g jk ∈ G such that

lim
k→∞


∑
j∈[n]

a jk g jk − f


p

= ∥spann(G) − f ∥p, (6)

We introduce notation for the combinatorics of the corresponding subset families. Suppose
F := {g1, g2, . . . , gn}, n ≥ 1 is any finite family of characteristic functions gi = χΩi

for measurable sets Ω1,Ω2, . . . ,Ωn ⊆ Ω , with F ⊂ L p(Ω , µ). If S ⊆ [n], we define
TF (S) ⊆ Ω by

TF (S) :=

(⋂
i∈S

Ωi

)
∩

⎛⎝⋂
j /∈S

Ω c
j

⎞⎠ ; (7)

that is,

TF (S) =

{
x ∈ Ω : ∀ j ∈ [n], g j (x) = 1 ⇐⇒ j ∈ S

}
. (8)
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One can check that for all F and all positive integers n, the following properties hold:
(i)

⋃
{TF (S) : S ⊆ [n]} = Ω , (ii) TF (∅) =

⋂n
j=1 Ω

c
j , and (iii) for all S1, S2 ⊆ [n], if

TF (S1) = TF (S2), then S1 = S2 or else S1 ̸= S2 but TF (S1) = ∅ = TF (S2).
We now utilize this construction in two separate instances — an infinite sequence coming

from the data and a corresponding limit sequence.
As G is compact, so is the n-fold Cartesian product Gn; hence, the sequence of n-vectors

{g jk : j ∈ [n]} from (6), has a subsequence {g jk′ : j ∈ [n]} converging to {g j : j ∈ [n]} ∈ Gn .
Passing to such a subsequence, one has for each j ∈ [n],

lim
k→∞

∥g jk − g j∥p = 0. (9)

The functions g jk and g j are characteristic functions for Ω jk and Ω j , resp.,

g jk = χΩ jk and g j = χΩ j .

For each k ≥ 1, we write Tk to denote T{g1k ,...,gnk }, so that

Tk(S) :=

{
x ∈ Ω : ∀ j ∈ [n], g jk(x) = 1 ⇐⇒ j ∈ S

}
. (10)

We write T for TF when F = {g1, . . . , gn}.
The following two equations are immediate and will be used freely below:

∀S ⊆ [n], ∀x ∈ Tk(S),
∑
j∈[n]

a jk g jk(x) =

∑
j∈S

a jk, (11)

and

∀S ⊆ [n], ∀x ∈ T (S),
∑
j∈[n]

a j g j (x) =

∑
j∈S

a j , (12)

where a j , a jk ∈ R. By definition, a sum over the empty set is the zero function.
In addition to (9) one may pass to a subsequence of k’s such that for every S ⊆ [n]:

Either there exists cS ∈ (−∞, ∞) s.t. limk→∞

∑
j∈S a jk = cS or else limk→∞ |

∑
j∈S a jk | = ∞.

Since there are only finitely many sets S, this is possible. Note that c∅ = 0.
It is useful to partition P[n] correspondingly, P[n] = U1 ∪ U2, where

U1 :=

{
S ⊆ [n] : lim

k→∞

∑
j∈S

a jk = cS

}
, (13)

U2 :=

{
S ⊆ [n] : lim

k→∞

⏐⏐⏐∑
j∈S

a jk

⏐⏐⏐ = ∞

}
. (14)

This partition will enable the application of Lemmas 1 to 5. Observe that ∅ ∈ U1 and that by
(6), there exists C > 0 such that for each k∫

Ω

⏐⏐⏐ f (x) −

∑
j∈[n]

a jk g jk(x)
⏐⏐⏐p

dµ(x) ≤ C. (15)

Let vk :=
∑

j∈[n] a jk g jk . By (11), we get for each k and each S ∈ U2,(
∥ f ∥p + ∥ f − vk∥p

)
p

≥ ∥vk∥
p
p ≥ ∥vkχTk (S)∥

p
p =

⏐⏐⏐∑
j∈S

a jk

⏐⏐⏐p
· µ(Tk(S)). (16)

The left-hand side is bounded above while
⏐⏐⏐∑ j∈S a jk

⏐⏐⏐ blows up, and we obtain

lim
k→∞

µ(Tk(S)) = 0 for all S ∈ U2. (17)
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Lemma 4. For every S ⊆ [n], limk→∞ µ
(

Tk(S)∆T (S)
)

= 0.

Proof. First we note that for p ∈ [1, ∞), for each j ∈ [n], and for all k ≥ 1,g jk − g j

p

p
=

∫
Ω jk∪Ω j

⏐⏐⏐g jk − g j

⏐⏐⏐p
=

∫
Ω jk∆Ω j

⏐⏐⏐g jk − g j

⏐⏐⏐p
+

∫
Ω jk∩Ω j

⏐⏐⏐g jk − g j

⏐⏐⏐p
,

But |g jk(x) − g j (x)|p
= 1 for x ∈ Ω jk∆Ω j and = 0 for x ∈ Ω jk ∩ Ω j , so∫

Ω jk∆Ω j

|g jk − g j |
p

= µ(Ω jk∆Ω j ) and
∫
Ω jk∩Ω j

|g jk − g j |
p

= 0.

By (9), we have ∥g jk − g j∥
p
p → 0, so for all j ∈ [n]

lim
k→∞

µ(Ω jk∆Ω j ) = 0. (18)

It is elementary to check that for arbitrary subsets A, B of some set E , one has A∆ B =

Ac ∆ Bc and also that for all subsets A, B, C, D of E

(A ∩ B)∆ (C ∩ D) ⊆ (A∆C) ∪ (B ∆ D). (19)

Now for k ≥ 1 and S ∈ P([n]), by definition, we have

Tk(S)∆T (S) =

[(⋂
j∈S

Ω jk

)
∩

(⋂
j /∈S

Ω c
jk

)]
∆
[(⋂

j∈S

Ω j

)
∩

(⋂
j /∈S

Ω c
j

)]
. (20)

By (7), (18), and (19), µ(Tk(S)∆T (S)) → 0. ■

As a consequence of Lemma 4 and Eq. (2), we have

lim
k→∞

µ(Tk(S)) = µ(T (S)) for all S ⊆ [n]. (21)

By definition of symmetric difference, 0 ≤ µ(A) ≤ µ(A∆ B) + µ(B) for any two sets A
and B. Taking A = T (S) and B = Tk(S), and using Eq. (17) as well as Lemma 4, one sees
that

µ(T (S)) = 0 for all S ∈ U2. (22)

Lemma 5. Let h ∈ L p(Ω , µ), p ∈ [1, ∞). Then there exist real numbers a1, a2, . . . , an such
that

lim
k→∞

(∫
Tk (S)

⏐⏐⏐h −

∑
j∈S

a jk

⏐⏐⏐p
dµ
)

=

∫
T (S)

⏐⏐⏐h −

∑
j∈S

a j

⏐⏐⏐p
dµ (23)

for all S ∈ U1.

Proof. With cS as in (13), choose a1, . . . , an as in Lemma 1 such that cS =
∑

j∈S a j for all
S ∈ U1.

For the common integrand
⏐⏐⏐h −

∑
j∈S a jk

⏐⏐⏐p
, we get for all k ≥ 1

0 ≤

∫
Tk (S)

−

∫
Tk (S)∩T (S)

=

∫
Tk (S)\T (S)

≤

∫
Tk (S)∆T (S)

(24)

and, again for the integrand
⏐⏐⏐h −

∑
j∈S a jk

⏐⏐⏐p
,

0 ≤

∫
T (S)

−

∫
Tk (S)∩T (S)

=

∫
T (S)\Tk (S)

≤

∫
Tk (S)∆T (S)

. (25)
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We claim the right-hand term in (24) and (25) goes to zero as k → ∞, i.e.,(h −

∑
j∈S

a jk) χTk (S)∆T (S)

p

p
=

∫
Tk (S)∆T (S)

⏐⏐⏐h −

∑
j∈S

a jk

⏐⏐⏐p
→ 0. (26)

Let c := supk

⏐⏐⏐∑ j∈S a jk

⏐⏐⏐; since S ∈ U1, c is finite. So, for all k ∈ N+, the following inequality
holds (h −

∑
j∈S

a jk) χTk (S)∆T (S)


p

≤ ∥hχTk (S)∆T (S)∥p + ∥cχTk (S)∆T (S)∥p. (27)

We claim that the right-hand side of (27) goes to zero. Indeed, the second term on the right is
c µ(Tk(S)∆T (S))1/p which goes to zero by Lemma 4, while the integrand in the first term on
the right is dominated by the integrable function |h|, so by Lebesgue dominated convergence
and Lemma 4, the first term goes to zero, and (26) follows.

Applying (26) to the limits of (24) and (25) we get (for S ∈ U1)

lim
k→∞

(∫
Tk (S)

⏐⏐⏐h −

∑
j∈S

a jk

⏐⏐⏐p
−

∫
T (S)

⏐⏐⏐h −

∑
j∈S

a jk

⏐⏐⏐p)
= 0. (28)

If S is non-empty, then T (S) is a subset of Ω j for every j ∈ S and thus of finite measure; if
S = ∅, both sums in (29) vanish. By definition (13) of U1 and Lemma 1, we get

lim
k→∞

∫
T (S)

⏐⏐⏐h −

∑
j∈S

a jk

⏐⏐⏐p
=

∫
T (S)

⏐⏐⏐h −

∑
j∈S

a j

⏐⏐⏐p
(29)

From (28) and (29), it follows that Eq. (23) holds. ■
Let r := ∥spann(G) − f ∥p. Using (6), we have

r p
= lim

k→∞

∑
j∈[n]

a jk g jk − f
p

p

and the last term can be re-expressed as a sum over U1 plus a sum over U2,∑
S∈U1

lim
k→∞

(∑
j∈S

a jk − f
)
χTk (S)

p

p
+

∑
S∈U2

lim
k→∞

(∑
j∈S

a jk − f
)
χTk (S)

p

p
(30)

≥

∑
S∈U1

(∑
j∈S

a j − f
)
χT (S)

p

p
=

∑
S∈U1

(∑
j∈S

a j g j − f
)
χT (S)

p

p
, (31)

where (for the inequality) we ignore the second summand (over U2) and use Lemma 5; the
last equality is just (12). By (22), µ(T (S)) = 0 for S ∈ U2, so the last term in (31) is equal
to
∑ j∈[n] a j g j − f

p

p
≥ ∥ f − spann(G)∥p

p = r p. Therefore, all the inequalities are equalities

and spann(G) is proximinal.
This argument also establishes that

lim
k→∞

∑
S∈U2

∫
Tk (S)

⏐⏐⏐ f −

∑
j∈S

a jk

⏐⏐⏐p
dµ = 0. (32)

We now show that spann(G) is approximatively compact by proving that

αk :=

∑
j∈[n]

a j g j −

∑
j∈[n]

a jk g jk

p

p
→ 0 as k → ∞.
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Since P([n]) = U1 ∪ U2, for all k ≥ 1, αk = βk + γk , where

βk :=

∑
S∈U1

∫
Tk (S)

⏐⏐⏐∑
j∈S

a j g j −

∑
j∈S

a jk

⏐⏐⏐p
dµ

and

γk :=

∑
S∈U2

∫
Tk (S)

⏐⏐⏐∑
j∈S

a j g j −

∑
j∈S

a jk

⏐⏐⏐p
dµ.

The sequence βk → 0 by Lemma 5, with h =
∑n

j=1 a j g j . To show that γk → 0, we let
u :=

∑
j∈S a j g j − f and vk,S := f −

∑
j∈S a jk . Then, for all k, one gets

γk =

∑
S∈U2

(u + vk,S)χTk (S)

p

p
≤

∑
S∈U2

(uχTk (S)


p
+

∑
S∈U2

vk,SχTk (S)


p

)p
. (33)

As k → ∞, the second term in the parenthesis on the right-hand side converges to zero by (32).
In addition, the first term in the parenthesis also goes to zero because of (17) and Lebesgue
dominated convergence. As limk→∞ αk = 0, spann(G) is approximatively compact. ■

5. Compact sets of 0-1 functions in L p(Rd, λ)

To use Theorem 1, one needs compact families of characteristic functions in L p(Ω , µ).
These are provided in the next five examples.

Of course, a trivial way to achieve such compactness is to take a finite family. Corresponding
families of subsets of Rd could be chosen at random or with the aim of well-covering the
portion of Rd most important to the data. Correct statistical theory here might facilitate
experimentation; e.g., Artstein & Vitale [1], Molchanov [18]. Or one might use a learning
algorithm to find a finite collection of subsets of a universe (e.g., Rd ) which provides good fits
to the class of data considered.

Another way to produce compact sets involves the continuous action of a topological group.

Example 1. Let E be any Borel set in Rd with finite Lebesgue-measure and let T be a compact
subset of Rd . The set of translates of E by elements t in T

F := {E + t : t ∈ T }

is a compact subset of S(Rd , λ) and the corresponding set of characteristic functions {χA : A ∈

F} is compact in L p(Rd , λ) for p ∈ [1, ∞).

This example, in which (Rd , +) is the group and λ is the Haar measure, is a special case
of the following theorem.

Theorem 2. Let (Ω , µ) be a locally compact topological group with regular Haar measure
µ, let E ⊆ Ω be a Borel set of finite measure. and let T ⊆ Ω be compact. Then {x E : x ∈ T }

is compact in S(Ω , µ), where x E := {xy : y ∈ E} and xy denotes the product of x and y
in Γ .

Proof. The function ΦE : x ↦→ x E is continuous from Ω to S(Ω , µ) when E is a Borel set
of finite measure [9, pp. 266–268]. So for T compact in Ω , the family ΦE (T ) = {x E : x ∈ T }

is compact in S(Ω , µ). ■



12 P.C. Kainen, V. Kůrková and A. Vogt / Journal of Approximation Theory 257 (2020) 105435

Let H denote the set of all closed half-space characteristic functions in Rd so H = {χHe,b :

(e, b) ∈ Sd−1
× R}, where He,b := {y ∈ Rd

: e · y ≥ b}. Given a subset C of Rd , let
H|C := {H |C : H ∈ H} \ {∅}, so H|C is the set of characteristic functions of non-empty
intersections of C with closed half-spaces. The next example generalizes [14].

Example 2. If C is a compact subset of Rd , then H|C is compact in L p(Rd , λ), p ∈ [1, ∞).

Proof. The restriction function defined by A ↦→ E ∩ A for E a fixed subset in S(Rd , λ)
is continuous [9, p. 168], so we may replace C by any ball BR (centered at 0) of radius R
sufficient to contain C . Non-empty subsets of BR of the form BR ∩ He,b will be called solid
caps. Let Y = Sn−1

× R with metric |(e, b) − (e′, b′)| equal to the sum of |b − b′
| and the

geodesic distance in Sd−1 between e and e′. Put Φ(e, b) := He,b ∩ BR . If we can show that
Φ : (Y, | · |) → (S, ρ∆) is continuous, then the set of solid caps is the image under Φ of a
compact set in Y , i.e., H|BR = Φ

(
Sd−1

× [−R, R]
)

, and so is ρ∆-compact, hence H|C is
L p-compact, p ∈ [1, ∞).

To prove that Φ is continuous, let {(ek, bk)} ⊂ Y and suppose for (e, b) ∈ Y ,

lim
k→∞

|(ek, bk) − (e, b)| = 0.

The symmetric difference metric ρ∆ satisfies the triangle inequality, so

µ(Φ(ek, bk))∆Φ(e, b) ≤ µ(Φ(ek, bk))∆Φ(ek, b) + µ(Φ(ek, b))∆Φ(e, b).

Since the first term on the right is independent of ek , it suffices to consider the two extreme
cases. (For n ≥ 1, let κn = π

n
2 /Γ ( n

2 + 1) be the volume of the unit ball in Rn .)
(i) All ek = e. Then, as bk → b, the volume of the symmetric difference of these concentric

caps is bounded by |b − bk | Rd−1 κd−1 and hence goes to zero.
(ii) All bk = b. Then solid caps S and Sk corresponding to e and ek , resp., are rotations of

one another by ϑ = arccos(e · ek), so λ(S∆Sk) → 0 as ek → e by continuity of the action of
the orthogonal group Od on Rd . ■

One could also prove continuity using calculus, by expressing the volume of a solid cap
when |b| ≤ R (required for a non-empty intersection) as

λ(BR ∩ He,b) = 2κd−2

∫ √
R2−b2

t=0

∫ √
R2−t2

s=b

(
R2

− t2
− s2

) d−1
2

ds dt.

The argument is straightforward but nontrivial. If the compact set C in Example 2 is convex,
then the sets in the family H|C are compact and convex.

For a metric space (X, s), the Hausdorff pseudometric [22, p. 47] between bounded
non-empty subsets A and B is given by

ρH (A, B) := inf{ε > 0 : A(ε) ⊇ B and B(ε) ⊇ A},

where A(ε) := {x ∈ X : s(x, A) ≤ ε}. Both ρH and ρ∆ are pseudometrics on the set of
all compact non-empty subsets of Rd and so give metrics on the corresponding families of
suitable equivalence classes. However, they differ radically in their treatment of the empty set
∅ which has infinite Hausdorff distance from all other sets but has finite ρ∆-distance to any
finite measure set.
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Theorem (Groemer [7]). For compact convex non-empty subsets A and B of Rd ,

ρ∆(A, B) ≤ cG ρH (A, B), (34)

where

cG :=
2κd

−1 + 21/d

(
D/2

)d−1
(35)

with D := max(diam(A), diam(B)).

The above inequality permits one to check continuity w.r.t. L p(Rd , λ) by showing that
continuity holds w.r.t. Hausdorff distance. Using (34) and Lemma 3, we get the following.

Proposition 2. Let A be a family of compact convex non-empty subsets of Rd . Suppose A is
compact in the topology induced by the Hausdorff metric. Then {χA : A ∈ A} is a compact
subset of L p(Rd , λ) for p ∈ [1, ∞).

This provides an alternate route to Example 2 as the set of solid caps of a ball is compact
w.r.t. Hausdorff distance.

The family K, consisting of all compact convex non-empty subsets of Rd , is boundedly
compact w.r.t. the Hausdorff metric [19, pp. 7, 19, 30-31]. For C ∈ K, let KC be the family

KC := {A ∩ C : A ∈ K} \ {∅} = {C ′
⊆ C : ∅ ̸= C ′ closed convex}.

Example 3. If C ∈ K, then {χA : A ∈ KC} is compact in L p(Rd , λ), p ∈ [1, ∞).

Proof. The set KC is bounded in the metric space (K, ρH ) since the Hausdorff distance between
any two (non-empty) closed subsets of C is bounded by the diameter of C . Further, KC is
closed. By bounded compactness of (K, ρH ), KC is compact and so, by Proposition 2, the
corresponding family of characteristic functions is compact in L p. ■

Example 4. For T compact ⊂ Rd and J compact ⊂ [0, ∞), let

B := B(T, J ) := {χB(x,r ) : x ∈ T, r ∈ J },

be the family of all characteristic functions of closed balls with center in T and radius r in J .
Then B is a compact subset of L p(Rd , λ), p ∈ [1, ∞).

Proof. If either T or J is empty, then B is also empty — hence, compact. Suppose T ̸= ∅ ̸= J .
It is easy to check that, for |a − b| = Euclidean distance, ρH (B(x, r ), B(x ′, r ′)) ≤ |x − x ′

| +

|r − r ′
| so Φ : Rd

× [0, ∞) → (K, ρH ) given by Φ(x, r ) := B(x, r ) is continuous.
Thus, the family {B(x, r ) : x ∈ T, r ∈ J } = Φ(T × J ) is compact and non-empty. Hence,

by Proposition 2, B is compact in L p. ■

By continuity of intersection (w.r.t. ρ∆), restricting the members of B to T (that is,
intersecting the balls with T ), one gets a different compact family. Example 4 and the above
remark can be extended to ellipsoids with bounded radii or eccentricity.

A polytope P in Rd is the convex hull of a finite set of points (e.g., [22, pp. 3, 94–95]),

P = conv({x1, . . . , xk}),

where conv({x1, . . . , xk}) := {
∑k

i=1 ci xi } for nonnegative ci summing to 1. There is a unique
minimum subset {xi1 , . . . , xiℓ} of {x1, . . . , xk} such that P is the convex hull of {xi1 , . . . , xiℓ},
constituting the extreme points of the polytope [22, p. 18].
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Example 5. For T a compact subset of Rd , let P(T, k) denote the set of all characteristic
functions of polytopes with at most k extreme points all of which are in T . Then P(T, k) is a
compact subset of L p(Rn, λ), p ∈ [1, ∞).

Proof. For x = (x1, . . . , xk) ∈ (Rd )k , let Φ(x) := conv({x1, . . . , xk}), so Φ : (Rd )k
→ K. For

y, y′
∈ (Rd )k , with |a − b| = Euclidean distance, define

s(y, y′) := s((y1, . . . , yk), (y′

1, . . . , y′

k)) := max{|y1 − y′

1|, . . . , |yk − y′

k |}.

For each i , 1 ≤ i ≤ k, yi has distance at most s(y, y′) from {y′

1, . . . , y′

k}, so

ρH

(
{y1, . . . , yk}, {y′

1, . . . , y′

k}

)
≤ s(y, y′).

But (e.g., [19, p. 30]) one has

ρH

(
conv({y1, . . . , yk}), conv({y′

1, . . . , y′

k})
)

≤ ρH

(
{y1, . . . , yk}, {y′

1, . . . , y′

k}

)
.

Hence, ρH (Φ(y),Φ(y′)) ≤ s(y, y′) so Φ : ((Rd )k, s) → (K, ρH ) is Lipschitz and P(T, k) =

Φ(T k) is compact in L p by Groemer’s inequality. ■

6. Discussion

In this paper we proved that a compact subset G of L p
χ = L p(Ω , λ) ∩ {[χA] : A ⊆ Ω}

determines an approximatively compact set spann(G) for each n ≥ 1. In a sense, characteristic
functions of sets of finite measure stand midway between points in Ω and general functions
in L p(Ω , µ) for p ∈ [1, ∞]; see, e.g., [10, p. 86]. The results proved here apply functional
analysis in this useful case.

Observe that compactness of G is neither necessary nor sufficient to guarantee the ap-
proximative compactness of spann(G). For example, if G is the standard orthonormal basis
{e j : j ∈ N+} in ℓ2(R), then G is not compact but spann(G) = spann({0} ∪ {e j/j : j ∈ N+}) is
approximatively compact by Theorem 1, as {0} ∪ {e j/j : j ∈ N+} is compact.

Let {e1, . . . , en+1} be the standard orthonormal basis of Rn+1. Let x, y be real numbers and
let

G0 := {xe1 + ye2 : (x − 1)2
+ y2

= 1} ∪ {e3, e4, . . . , en+1} ⊂ Rn+1,

which is a circle plus a finite number of points; hence G0 is compact. Then

spann(G0) =

{n+1∑
j=1

a j e j : a1 ̸= 0 or the product a2a3 · · · an+1 is zero
}
,

and more generally for all k, 1 ≤ k ≤ n,

spank(G0) =

{ n+1∑
j=1

a j e j : (i) a1 ̸= 0 and exactly n − k of the numbers

a3, . . . , an+1 equal zero, or

(i i) a1 = a2 = 0 and at least n − k − 1 of the numbers a3, . . . , an+1 equal zero, or

(i i i) at least n − k + 1 of the numbers a3, . . . , an+1 equal zero
}

.
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Let h :=
∑n+1

j=1 a j e j , where a1 = 0 but a2 ̸= 0 and exactly n − k of the numbers a3, . . . , an+1
equal zero. Then h is not in spank(G0) but is in its closure. Hence, spank(G0) is not closed
and so is not approximatively compact.

We ask whether or not there exists a generalization of Groemer’s inequality (34) to X = Rd

with a metric other than Euclidean metric and a Borel measure other than Lebesgue measure.
If K(X ) denotes the set of non-empty compact convex subsets of X , writing ρH and ρ∆, resp.,
for the corresponding Hausdorff and symmetric-difference metrics, is it true that the identity
function is continuous from (K(X ), ρH ) to (K(X ), ρ∆)?

As an important special case, one may consider a target function f , to be L p-approximated,
which is itself a characteristic function f = χE , where E is a measurable subset of Ω and E
is of finite measure when p is finite. Let G be a compact subset of L p

χ (Ω , µ) (1 ≤ p ≤ ∞).
We can project f to the set Π ( f ) consisting of the best approximations to f in spann(G) w.r.t.
the dp-metric. But linear combinations of characteristic functions are not likely to be of that
same kind.

In fact, we can approximate such a function f ∈ L p
χ by other characteristic functions which

are derived from Π ( f ). For any element h =
∑n

i=1 aiχΩi and for any t ∈ R, define the “level
set”

A(h, t) :=

{
x ∈ Ω :

n∑
i=1

aiχΩi (x) ≥ t
}

= {x ∈ Ω : h(x) ≥ t}; (36)

Cheang and Barron [2] used this construction to approximate the unit ball w.r.t. ρH or ρ∆.
Observe that A(h, t) = Ω if t ≤ min∅ ⊆ J ⊆[n]

∑
j∈J a j . Similarly, A(h, t) = ∅ if t >

max∅ ⊆ J⊆ [n]
∑

j∈J a j . The parametrized family F(h) := {A(h, t), t ∈ R} has at most 2n

elements. To approximate f , we propose using

Q( f ) :=

⋃
h∈Π ( f )

F(h). (37)

If Q( f ) is compact, it constitutes a new family G ′ and allows an iteration of the previous
process. Analogous constructions apply if f is replaced by a compact subset C ⊆ L p

χ as
in [11].

Characteristic functions of sets offer the possibility of localized approximation. Chui, Li,
and Mhaskar [3] introduced this notion to describe a situation in which perturbation of a
target function in some small region only requires the readjustment of a small subset of
the weights. They argue that a one-hidden-layer network, using Heaviside activation, cannot
provide localized approximation for input dimension d > 1 (though a two-hidden-layer
network, which they describe, does give localized approximation). They further argue in [4]
that a neural network (with sigmoidal function) having a single hidden layer cannot represent
the characteristic function of a cube. But the networks we consider in Theorem 1 do not suffer
from these limitations.

Indeed, our construction replaces closed half-spaces by subsets of Rd , taken from a compact
family, as the “parameter” for an indicator function (i.e., 0/1-neuron). If the target function
is also a characteristic function, then localized approximation is given by a partition (or an
approximate partition) of the domain into sets whose characteristic functions belong to a
compact family G.

When the sets corresponding to G are polytopes, achieving each of the corresponding
indicator functions can be obtained with a small two-layer Heaviside network. For example,
the characteristic function of the d-cube can be obtained with 2d units in the first layer and
one in the second layer.
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To apply Theorem 1, one asks which families G give the best fit by spann(G) to a particular
class of natural data, e.g., street scenes of human activity? A variety of features or image-
attributes such as color, texture, translucency, sharpness of edge, fundamental geometry and
topology, extent, and motion-blur, among others, may be used to define regions-of-interest
in the data, where various recognition engines could be applied. Results here may connect
machine learning with the theory of random closed or compact sets [1] using functional
approximation by characteristic functions.

CRediT authorship contribution statement

Paul C. Kainen: Conceptualization, Formal analysis, Writing original draft. Věra Kůrková:
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