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Abstract

Quantitative bounds on rates of approximation by linear combinations of Heaviside plane waves are ob-
tained for sufficiently differentiable functions f which vanish rapidly enough at infinity: for d odd and f ∈
Cd(Rd), with lower-order partials vanishing at infinity and dth-order partials vanishing as ‖x‖−(d+1+ε),
ε > 0, on any domain � ⊂ Rd with unit Lebesgue measure, the L2(�)-error in approximating f by a
linear combination of n Heaviside plane waves is bounded above by kd‖f ‖d,1,∞n−1/2, where kd ∼
(�d)1/2(e/2�)d/2 and ‖f ‖d,1,∞ is the Sobolev seminorm determined by the largest of the L1-norms of the
dth-order partials of f onRd . In particular, for d odd and f (x)=exp(−‖x‖2), the L2(�)-approximation error
is at most (2�d)3/4n−1/2 and the sup-norm approximation error onRd is at most 68

√
2(n−1)−1/2(2�d)3/4√

d + 1, n�2.
© 2007 Published by Elsevier Inc.
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1. Introduction

Let Hd denote the set of all half-space characteristic functions on 	d , also called Heaviside
plane waves. We approximate a given function f on 	d by a finite linear combination of elements
from Hd .
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Barron [5] studied the effect of smoothness on such approximation by plane waves (i.e., by
perceptron neural networks). Maurey [31], Jones [16], and Barron showed that if f is in the L2-
closure of the convex hull of Hd ∪ −Hd (restricted to a unit-volume domain of 	d ), then f is
within L2-distance of n−1/2 of a subspace spanned by n members of Hd . Applying this, Barron
obtained an O(n−1/2) estimate but the constant (with respect to n) depends on d in an unspecified
fashion—see [5, p. 941].

In this paper we apply the Maurey–Jones–Barron upper bound and obtain an explicit constant for
functions expressed directly as integral combinations of Heaviside plane waves. Similar integral
representations have been used to prove density of linear spans generated by Heaviside plane
waves, e.g. [6,13,15,26], and to bound rates of approximation by radial waves, e.g. [7,11,12,27];
see also the survey [30]. For other aspects, see [17,19].

We show that for d odd and � ⊂ 	d a subset of unit measure, the L2(�)-error in approximating
the Gaussian by a linear combination of n Heaviside plane waves is at most (2�d)3/4 n−1/2. Thus,
radial-basis-type approximations utilizing the Gaussian function can be replaced by perceptron-
type approximations based on the Heaviside function with only a mild increase in the number of
units needed to obtain a given accuracy.

An outline of the paper follows. Section 2 states the MJB Theorem in terms of variational norm.
Section 3 bounds this norm above for functions representable by an integral formula involving
Heavisides. Section 4 describes a class of functions f and a particular integral formula whose
weight function permits evaluation of the bound. Section 5 relates these results to the Radon
transform, and Section 6 determines the consequences for the Gaussian function.

2. Rates of approximation in Hilbert space

In this paper all normed linear spaces are over the reals 	 and Sd−1 denotes the unit sphere
in 	d .

Let (X, ‖.‖) be a normed linear space with nonempty subset G. For n�1, span G and spann G

denote the set of all finite linear combinations (and all n-fold linear combinations, resp.) of
elements from G, while conv G denotes the set of all finite linear combinations of elements from
G using nonnegative scalars with sum equal to 1.

For f ∈ X, let ‖f ‖G,X = inf {c > 0 : f/c ∈ cl conv (G ∪ −G)}, where cl denotes closure
with respect to the topology induced by the norm on X. This extended-real-valued functional is
called G-variation; the subset G should be bounded, nonempty, and nonzero to avoid trivialities.
For c�0, ‖f ‖G,X �c if and only if for every ε > 0 there exists n�1 such that for each j, 1�j �n,
there exist gj ∈ G and cj ∈ 	 such that∥∥∥∥∥∥f −

n∑
j=1

cjgj

∥∥∥∥∥∥ < ε,

n∑
j=1

|cj |�c. (1)

See [22] and for recent applications [23,25].
The Maurey–Jones–Barron Theorem [31, p. V.2, 16, p. 611, 5, p. 934] can be stated as follows:

Theorem 2.1. If X is a Hilbert space with G a bounded, nonempty, and nonzero subset, then for
every f ∈ X and every positive integer n,

‖f − spann G‖X �n−1/2

(
sup
g∈G

‖g‖X

)
‖f ‖G,X.
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3. Upper bounds on half-space variation

Let Hd be the set of characteristic functions of closed half-spaces. Then

Hd = {ϑe,b |e ∈ Sd−1, b ∈ 	},
where ϑe,b : 	d → 	 is given by ϑe,b(x) = ϑ(e · x + b), ϑ is the Heaviside function ϑ(t) = 0
for t < 0 and ϑ(t) = 1 for t �0, and the parameters e, b belong, respectively, to Sd−1 and 	.
Thus, Hd is the set of all compositions of affine functions with ϑ. The functions ϑe,b are called
Heaviside plane waves.

Let M(�) be the space of bounded measurable functions on a measurable subset � of 	d

under the sup norm. Note that Hd ⊂ M(	d).

Theorem 3.1. Let d �1. If f ∈ M(	d) can be expressed as

f (x) =
∫

Sd−1×	
w(e, b)ϑ(e · x + b) de db,

where w is continuous on Sd−1 × 	, then

‖f ‖Hd ,M(	d ) �
∫

Sd−1×	
|w(e, b)| de db.

Proof. Let P = Sd−1 ×	. For p = (e, b) in P and x in 	d , let ϑp(x) := ϑe,b(x) = ϑ(e · x + b).
Then d�(p) = de db, where � is the product of the usual measure �d−1 on Sd−1 and Lebesgue
measure on 	.

Let ε > 0 be arbitrary. Without loss of generality, we may assume that the L1-norm of w is
finite, and choose a closed interval [−M, M] ⊂ 	 so that with P̂ = Sd−1 × [−M, M],∫

P \P̂
|w(p)| d�(p) < ε.

As P̂ is compact, �(P̂ ) is finite. Let �w denote the modulus of continuity of w on P̂ , so for t �0,
if |p − p′| < �w(t), then |w(p) − w(p′)| < t for all p, p′ ∈ P̂ . Since w is continuous and P̂ is
compact, sup

p∈P̂
|w(p)| < ∞.

Define f̂ on 	d by

f̂ (x) =
∫

P̂

w(p)ϑp(x) d�(p).

Then, since ϑ(t)�1, ‖f − f̂ ‖M(	d ) < ε.
To prove the theorem, by the definition of Hd -variation and the triangle inequality, it now

suffices to show that there is a finite linear combination of characteristic functions of half-spaces
within arbitrarily small sup-norm distance of f̂ such that the sum of the absolute values of
the coefficients does not exceed

∫
P

|w| d�(p). We obtain such characteristic functions and their

coefficients from a sufficiently small-mesh tiling R of P̂ .
A tiling of a compact subset Y of a finite-dimensional Euclidean space is a finite collection R

of subsets R ⊂ Y such that the union of R is Y, each R in R is compact and connected, and the
pairwise intersections of elements in R have measure zero. The mesh �(R) of a tiling R is the
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maximum of the diameters of its elements. Clearly, for any M �0, Sd−1 × [−M, M] has tilings
with arbitrarily small mesh.

For any compact connected R ⊂ P̂ let cR := min{|w(p)| : p ∈ R} and let pR ∈ R satisfy
|w(pR)| = cR .

Let � > 0. We claim that there exists �0 > 0 such that for all tilings R of P̂ with �(R)��0,
if gR := ∑

R∈R cR�(R)ϑpR
, then supx∈	d |gR(x) − f̂ (x)| < 2�. Since

∑
R∈R |cR�(R)|� ∫

P̂|w(p)|d�(p)�
∫
P

|w(p)| d�(p), this will prove the theorem.

Let R be any tiling of P̂ . For each x in 	d , Rx denotes the set of all R ∈ R that contain some
interior point p = (e, b) for which x ∈ He,b, i.e., so that e · x + b = 0. Then R is in Rx if and
only if ϑp(x) takes on two distinct values on subsets of R with positive measure.

For each x in 	d , the following inequality holds:

|gR(x) − f̂ (x)|�
⎛
⎝ ∑

R∈R\Rx

+
∑

R∈Rx

⎞
⎠(∫

R

|w(pR)ϑpR
(x) − w(p)ϑp(x)| d�(p)

)
.

The first sum is less than � if the mesh �(R) is sufficiently small. Indeed, since ϑp(x) is
constant (up to a set of measure zero) on such R, each summand is at most

∫
R

|w(pR) −
w(p)| d�(p)���(R)/�(P̂ ) when �(R)��w(�/�(P̂ )).

The second sum cannot exceed 2 sup
p∈P̂

|w(p)|∑R∈Rx
�(R). Thus, the theorem holds

provided that we can make the sum of the measures of the tiles in Rx as small as we please
simultaneously for all x in 	d .

Let x ∈ 	d and let Âx := {(e, b) ∈ P̂ : e · x + b = 0} = (Sd−1 × [−M, M]) ∩ (x, 1)⊥.
Let Ax,� denote the subset of P̂ consisting of all points p′ ∈ P̂ within distance � of Âx . Then⋃{R : R ∈ Rx} ⊂ Ax,� if �(R)��.

Moreover, �(Ax,�) can be made arbitrarily small by taking � sufficiently small. Indeed, when
‖x‖�M , then Âx is a generalized ellipsoid and

�(Ax,�)�2	d �
√

1 + M2.

When ‖x‖ > M , then for each b in [−M, M], (x, 1)⊥ intersects Sd−1 × {b} in a copy of Sd−2

with radius
√

1 − b2/‖x‖2. For � sufficiently small and d �3, it can be shown that

�(Ax,�)�4M	d−1 �
√

1 + 1/‖x‖2 < 4	d−1 �
√

M2 + 1

for all x with ‖x‖ > M . For d = 2, the upper bound above is replaced by a similar expression
involving �(2�

√
1 + 1/M2 ), where � is the modulus of continuity of the inverse cosine. When

d = 1, Ax,� is empty.
Thus, ‖f̂ − gR‖M(	d ) is arbitrarily small when the mesh �(R) is sufficiently small, and the

theorem is proved. �

For f in M(	d) and � ⊂ 	d with finite nonzero measure, let ‖f ‖Hd ,L2(�) denote the variation
of f |� with respect to L2(�) and its subset {h|� : h ∈ Hd}.

Corollary 3.2. Let f in M(	d) satisfy f (x) = ∫
Sd−1×	 w(e, b)ϑ(e · x + b) de db for some

continuous function w on Sd−1 × 	. Then for � ⊂ 	d with finite nonzero measure

‖f ‖Hd ,L2(�) �
∫

Sd−1×	
|w(e, b)| de db.
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Proof. By (1) and an easy argument, ‖f ‖Hd ,L2(�) �‖f ‖Hd ,M(	d ). �

4. An upper bound on the L1-norm of a weight function

In this section we give an explicit integral formula for sufficiently smooth functions on 	d ,
d odd, that vanish together with their derivatives sufficiently rapidly at infinity. We also show
that the L1-norm of the weight function is bounded by the product of a Sobolev seminorm of f
and a factor approximately equal to

√
�d ( e

2� )d/2. The integral representation for such functions
f is in terms of Heaviside plane waves and the weight function wf involves iterated directional
derivatives.

Recall that the rth iterated directional derivative D
(r)
e f (x) of a function f on 	d at the point

x ∈ 	d for the unit vector e ∈ Sd−1 is defined recursively as D
(0)
e f (x) = f (x) and D

(r+1)
e f (x) =

∇(D
(r)
e f (x)) · e, where ∇ denotes the gradient vector (�/�x1, . . . , �/�xd). It is convenient to

expand the directional derivative in the following operator equation (e.g., [10, p. 130]):

D(r)
e =

∑
|
|=r

(
r




)
e
D
, (2)

where 
 = (
1, . . . , 
d) is a multi-index with nonnegative integer components, |
| = 
1+· · ·+
d ,(
r



) = r!/
1! · · · 
d ! , v
 = v

1
1 · · · v
d

d for v = (v1, . . . , vd) in 	d , and D
 = �d
i=1(�/�xi)


i .
Also, we write |v|
 for |v1|
1 · · · |vd |
d .

A function f is called of weakly controlled decay [20, Proposition 3] if
(i) f ∈ Cd(	d) for d odd,

(ii) for every 
, 0� |
| < d , lim‖x‖→∞(D
f )(x) = 0, and
(iii) there exists ε > 0 such that for each multi-index 
 with |
| = d

lim‖x‖→∞(D
f )(x)‖x‖d+1+ε = 0.

Examples of functions of weakly controlled decay on 	d are the Gaussian function �d(x) =
exp(−‖x‖2), the other members of the Schwartz class S(	d) [2], and all d-times continuously
differentiable functions of compact support.

The following integral representation was derived in [24,18,20] by methods from [9],
cf. [14]. Let dH y denote the volume element of the hyperplane He.b := {y ∈ 	d : e ·y +b = 0}.

Theorem 4.1 (Kainen et al. [20, Theorem 1]). If f is of weakly controlled decay on 	d , for d odd,
then

f (x) =
∫

Sd−1

∫
	

wf (e, b)ϑ(e · x + b) db de,

where wf (e, b) := ad

∫
He,b

(D
(d)
e (f ))(y) dH y with ad = (−1)(d−1)/2(1/2)(2�)1−d .

A related representation was derived in [18,20] for the case d even but the weight function for
that case requires an additional logarithmic factor.

In the theorem, wf is continuous. To evaluate its L1-norm, we need the following: let
	d = �d−1(S

d−1) be the usual measure of the unit sphere in d-space. Then (e.g., [8, p. 303])
	d = 2�d/2/
( d

2 ), where 
 is the gamma function. By Stirling’s Formula (e.g., [1, 6.1.38,
p. 257]) 
(x) ∼ √

2�xx−1/2 exp(−x) where r(x) ∼ s(x) means limx→∞ r(x)/s(x) = 1.
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For f ∈ Cd(	d), we consider the Sobolev seminorm (cf. [2, p. 101])

‖f ‖d,1,∞ := max|
|=d
‖D
f ‖L1(	d ). (3)

Then ‖f ‖d,1,∞ is not larger (and usually is much smaller) than the ordinary Sobolev norm ‖f ‖d,1,
which is the sum of the L1 norms of a larger set of partials. Also, ‖f ‖d,1,∞ is finite for f of weakly
controlled decay on 	d .

Theorem 4.2. If f is of weakly controlled decay on 	d , d odd, then∫
Sd−1×	

|wf (e, b)| de db�kd‖f ‖d,1,∞,

where kd = |ad |	ddd/2 = 21−d�1−d/2dd/2/
( d
2 ) ∼ (�d)1/2 ( e

2�

)d/2
.

Proof. By definition of wf , using standard properties of the integral, the definition of the Sobolev
seminorm, and the multinomial theorem, we have∫

Sd−1

∫
	

∣∣∣∣∣
∫

He,b

D(d)
e (f ) dH y

∣∣∣∣∣ db de �
∫

Sd−1

∫
	

∫
He,b

∑
|
|=d

(
d




) ∣∣∣∣∣e
(D
f )(y)

∣∣∣∣∣ dH y db de

=
∫

Sd−1

∫
	d

∑
|
|=d

(
d




) ∣∣∣∣∣e
(D
f )(y)

∣∣∣∣∣ dy de

=
∫

Sd−1

∑
|
|=d

(
d




)
|e|


∫
	d

∣∣∣∣∣(D
f )(y)

∣∣∣∣∣ dy de

�
∫

Sd−1

∑
|
|=d

(
d




)
|e|
‖f ‖d,1,∞ de

= ‖f ‖d,1,∞
∫

Sd−1

(
d∑

i=1

|ei |
)d

de.

As
∑d

i=1 |ei | is maximized on Sd−1 when |ei | = d−1/2 for i = 1, . . . , d, we have∫
Sd−1 (

∑d
i=1 |ei |)dde�	ddd/2. �

Using Theorems 3.3, 4.1, and 4.2, we get the following inequality:

Corollary 4.3. If f is of weakly controlled decay on 	d , d odd, then

‖f ‖Hd ,M(	d ) �kd‖f ‖d,1,∞.

By Theorem 2.1 (with X = L2(�) and G = Hd , so that supg∈G ‖g‖ = �(�)1/2), Corollary
3.2, and Theorem 4.2, we have the following bound on rate of approximation.

Corollary 4.4. Let d be odd and let � ⊂ 	d be measurable with finite nonzero measure. If f is
of weakly controlled decay on 	d , then for n�1

‖f |� − spann Hd‖L2(�) �n−1/2�(�)1/2kd‖f ‖d,1,∞,

where kd = 21−d�1−d/2dd/2/
( d
2 ).
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This implies, for instance, that functions of weakly controlled decay with Sobolev seminorm
exponentially large in d (e.g., 2d/2) can be approximated in L2(�) with rates less than or equal
to n−1/2 by neural nets with n Heaviside perceptrons and a single linear output unit when � has
unit measure.

Other bounds have been obtained for d both even and odd. Barron [4] estimated rates of
approximation by spann Hd for functions of bounded half-space variation in the supremum norm
on a bounded subset of 	d and showed they are O(n−1/2). Makovoz [26] showed that on the
unit ball in 	d the sup-norm distance between spann Hd and a function having a suitable integral
representation in Heaviside plane waves is at most Cn−1/2−1/2d

√
log n.

Cheang and Barron [7, pp. 188, 201] state that if � is a measurable subset of 	d and h is
a function on � with a Heaviside integral representation with respect to a probability measure
on Sd−1 × 	, then ‖h − spann Hd‖M(�) �34n−1/2

√
d + 1. It follows that if f has an integral

representation on 	d with weight function w, then for n�1

‖f − span2n Hd‖M(�) �68n−1/2
√

d + 1‖w‖L1(Sd−1×	). (4)

Indeed, if ‖w‖L1 = ∞ or 0, the result is trivial. Otherwise, as in [7, pp. 187–189], write w =
w+ − w−, let f+ and f− be the corresponding functions, normalize, and apply the probability
measure.

By 4.2 and (4) we have

Corollary 4.5. If f is of weakly controlled decay on 	d , d odd, then for n�1

‖f − span2n Hd‖M(	d ) �68n−1/2
√

d + 1 kd‖f ‖d,1,∞.

For neural networks with Gaussian radial-basis function units, Girosi [11, Proposition 3.2]
derived an analogous expression for sup-norm approximation on 	d when the function to be
approximated is the convolution of a Bessel potential and an integrable function; also see [21] for
some extensions of Girosi’s results.

5. Variation with respect to half-spaces and total variation

In this section we establish a formula expressing half-space variation in terms of the total
variation of a related one-dimensional function. We also point out a connection with the Radon
transform.

Let a < b be finite. For h : [a, b] → 	 the total variation T[a,b](h) of h on the interval [a, b] is
the supremum over all finite partitionsa = a1 < · · · < ak = b of the sum

∑k
j=1 |h(aj )−h(aj+1)|.

We say that h has bounded variation on the interval [a, b] when T[a,b](h) < ∞. Every continuously
differentiable function h on [a, b] has bounded variation and T[a,b](h) = ∫

[a,b] |h′(t)| dt since h
is Lipschitz and absolutely continuous. For h : 	 → 	, the total variation T (h) is defined to
be the supremum over all finite intervals [a, b] of T[a,b](h|[a,b]), and h is said to be of bounded
variation (on 	) when its total variation is finite [28, pp. 215–259].

Given a function f of weakly controlled decay on 	d and a unit vector e ∈ Sd−1, define �f,e

on 	 by

�f,e(b) =
∫

He,b

D(d−1)
e f (y) dH y. (5)
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Proposition 5.1. If f is of weakly controlled decay, d odd, then

‖wf ‖L1(Sd−1×	) = (1/2)(2�)1−d

∫
Sd−1

T (�f,e) de.

Proof. Since
∫
He,b

D
(d)
e f (y) dH y = −(�/�t)(

∫
He,t

D
(d−1)
e f (y) dH y)|t=b,

∫
Sd−1×	

|
∫

He,b

D(d)
e f (y) dH y | de db =

∫
Sd−1

∫
	

|�′
f,e(b)| db de =

∫
Sd−1

T (�f,e) de.

Hence, 5.1 follows from 4.1. �

For a function � in C(	d) with �(x) = O(1/‖x‖a) for a > d − 1, the Radon transform R(�)

is defined to be the function on Sd−1 × 	 given by

R(�)(e, b) =
∫

He,b

�(y) dH y.

For d odd and f on 	d of weakly controlled decay, the iterated directional derivative in (5) can
be replaced by an iterated Laplacian (cf. [20, Proposition 2])), and

�f,e(b) = R(�
d−1

2 f )(e, b).

Since �
d−1

2 f vanishes at infinity to order greater than d − 1, the right-hand side above is finite.
Proposition 5.1 shows that if f satisfies the conditions of Theorem 4.1, then the half-space

variation of f is bounded above by a multiple of the spherical average of the total variation of the
Radon transform of an iterated Laplacian of f.

6. Half-space variation of the Gaussian

Consider the Gaussian function �d on 	d defined as �d(x) = exp(−‖x‖2)). It is shown that
for d odd, the half-space variation of �d is at most (2�d)3/4. Consequences are given for rate of
approximation of the Gaussian by Heaviside perceptron networks in the L2 and sup norms.

Theorem 6.1. Let d be odd. Then ‖w�d
‖L1(Sd−1×	) �(2�d)3/4.

Proof. Let e1 denote the standard unit vector along the x1-axis and write � for �1. Then ‖�d‖L1(	d )

= ‖�‖d
L1(	)

= �d/2, and by Proposition 5.1 we have

‖w�d
‖L1 = (1/2)(2�)1−d

∫
Sd−1

T (��d ,e) de

= |ad |	d

∫
	

∣∣∣∣∣
∫

He1,b

(D(d)
e1

�d)(y) dH y

∣∣∣∣∣ db

= |ad |	d

∫
	

|�(d)(b)| db

∫
	d−1

�d−1(y) dy = ldT (�(d−1)),

where ld = |ad |	d�(d−1)/2 = (1/2)(2�)1−d 2�d/2


(d/2)
�(d−1)/2 = 21−d

√
�


(d/2)
= 2(1−d)/2

(d−2)(d−4)···1 .



P.C. Kainen et al. / Journal of Approximation Theory 147 (2007) 1–10 9

Szász [32] proved the following result: for d �0 and all real x

|Hd(x)|e−x2/2 �(2dd!)1/2.

It follows that

T (�(d−1)) =
∫
R

|Hd(x)|e−x2
dx�(2dd!)1/2

√
2�.

However, using Stirling’s approximation [1, p. 257], for d an odd integer �3,

(2dd!)1/2
√

2� ld �(2�d)3/4
(

d − 1

d

)3/4

exp

(
1

6(d − 1)

)
�(2�d)3/4.

For d = 1, the left-hand side equals
√

4� < (2�)3/4. Hence, ‖w�d
‖L1 �(2�d)3/4. �

Combining 2.1 (with supg∈G ‖g‖ = �(�)1/2), 3.2, and 6.1, we obtain

Corollary 6.2. Let d be odd and n�1. If � ⊂ 	d has finite nonzero measure, then

‖�d − spann Hd‖L2(�) �(2�d)3/4 �(�)1/2 n−1/2.

By (4) and Theorem 6.1, for d odd

‖�d − span2n Hd‖M(	d ) �68(2�d)3/4 n−1/2
√

d + 1. (6)

By a change of variables, for all n�2

‖�d − spann Hd‖M(	d ) �68(2�d)3/4
√

2 (n − 1)−1/2
√

d + 1. (7)

In contrast, in [7, p. 189] Cheang and Barron find that for d even and odd,

‖�d(·/√2) − span2n Hd‖M(Br ) �68 r n−1/2
√

d(d + 1), (8)

where Br is the ball of radius r in 	d . By a change of variables, (8) implies

‖�d − span2n Hd‖M(Br ) �68
√

2 r n−1/2
√

d(d + 1). (9)

Thus (6) gives a better sup-norm bound on Br than (9) when r > (2�d)3/8 and d is odd.
We thank one of the referees for pointing out Szász’s result and its citation by Szegő [33,

p. 190]; see also [3, p. 340]. One can prove a different result, which replaces (2�d)3/4 by 2d

(again for d odd); for d < �3/2, the 2d bound is better. The 2d bound estimates the total variation
of a derivative of the one-dimensional Gaussian as twice the number of local extrema multiplied
by the largest local extremum which must occur at zero by a theorem of Sonin and Polya (see
also Butlewski) [33, p. 166].
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[22] V. Kůrková, Dimension-independent rates of approximation by neural networks, in: K. Warwick, M. Kárný (Eds.),

Computer-Intensive Methods in Control and Signal Processing: Curse of Dimensionality, Birkhauser, Boston, 1997,
pp. 261–270.
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