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Proof: First, let us observe that, underH0, it follows that

kr2i �~r2i k2H=3(�2i+~�2i )�2 2�2i (h'i; ~'ii)2+�i~�i k"1���! 0:

(22)

Next, proceeding as in the proof of Theorem 7 we have
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where we have applied
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Finally, by lettingN ! 1 and taking (22) into account, the result
follows. The proof is similar underH1.
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Bounds on Rates of Variable-Basis and Neural-Network
Approximation

Věra Kůrková and Marcello Sanguineti

Abstract—Tightness of bounds on rates of approximation by feedfor-
ward neural networks is investigated in a more general context of nonlinear
approximation by variable-basis functions. Tight bounds on the worst case
error in approximation by linear combinations of elements of an or-
thonormal variable basis are derived.

Index Terms—Approximation by variable-basis functions, bounds on
rates of approximation, complexity of neural networks, high-dimensional
optimal decision problems.

I. INTRODUCTION

Feedforward neural networks have been successfully applied to the
approximate solution of a large variety of high-dimensional problems
ranging from the design of controllers acting on strongly nonlinear dy-
namic systems characterized by a large number of state variables to
the identification of industrial processes and pattern recognition. All
these problems share a common aspect: a certain network architecture
is used to approximate multivariable input/output mappings (see, e.g.,
[1]–[3]).

Experience has shown that simple architectures with relatively few
computational units can achieve surprisingly good performances. How-
ever, as the number of variables is scaled up, the feasibility of network
design may become critical. Nevertheless, some network architectures
can be mathematically proved to have desirable computational capa-
bilities, guaranteeing that the number of computational units does not
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work of M. Sanguineti was supported in part by the Italian Ministry of Univer-
sity and Research (Project “New Techniques for the Identification and Adaptive
Control of Industrial Systems”).
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increase too fast with the dimensionality of certain tasks. Such theoret-
ical results supplement experience with design criteria based on math-
ematical models.

Feedforward networks are often implemented on classical com-
puters; for such implementations, one of the crucial issues is the
number of hidden unitsneeded to guarantee a desired accuracy. The
dependence of such accuracy on the number of hidden units can be
theoretically studied in the context of approximation theory in terms
of rates of approximation.

Some insight into the reason why many high-dimensional tasks can
be performed quite efficiently by neural networks with a moderate
number of hidden units has been gained by Jones [4], who has con-
structed incremental approximants with a rate of convergence of the
order ofO(1=

p
n). The same estimates of rates of approximation had

earlier been proved by Maurey using a probabilistic argument (it has
been quoted by Pisier [5]; see also Barron [6]). Barron [6] has improved
the constant in Jones’s [4] upper bound and has applied such a bound to
neural networks. Using a weighted Fourier transform, he has described
sets of multivariable functions approximable by perceptron networks
with n hidden units to an accuracy of the order ofO(1=

p
n). However,

it should be stressed that the sets of multivariable functions to which
such estimates apply may become more and more constrained as the
numberd of variables increases (see, e.g., Girosi, Jones, and Poggio
[7]), and some quantities not appearing in the notationO(1=

p
n) may

depend ond (see, e.g., Ku˚rková, Savický, and Hlavá̌cková [8]).
Several authors have further improved or extended these upper

bounds. An extension toLp spaces, withp 2 (1; 1), has been
derived by Darkenet al. [9] (with a rate of approximation of the order
of O(n�1=q), whereq = max(p; p=(p � 1)). Similar upper bounds
for theL1 space have been obtained by an extension of Maurey’s
probabilistic argument (see, e.g., Barron [10], Girosi [11], Gurvits
and Koiran [12], Makovoz [13], Ku˚rková, Savický, and Hlavá̌cková
[8]). An interesting improvement has been derived by Makovoz [14],
who has combined a concept from metric entropy theory with a prob-
abilistic argument. Possibilities of simplifying Jones’s construction
and/or modifying its parameters have been investigated by Dingankar
and Sandberg [15], Docampo, Hush, and Abdallah [16], and Docampo
[17]. Barron [6] and Ku˚rková and Sanguineti [18] have described sets
of multivariable functions for which the worst case errors in linear
approximation are larger than those in neural-network approximation.
Using an argument much simpler than the proof techniques employed
by Maurey, Jones, and Barron, Mhaskar and Micchelli [19] have
obtained similar upper bounds for orthonormal approximating sets.
For finite-dimensional spaces, Ku˚rková, Savický, and Hlavá̌cková [8]
have improved Mhaskar and Micchelli’s bounds up to tight ones. For
perceptron networks, the tightness of Maurey–Jones–Barron’s bound
has been studied by Barron [10], Makovoz [14], and Ku˚rková and
Sanguineti [20].

This work is motivated by recent papers by Dingankar [21], [31],
and Levretsky [32], which explore the possibility of improving
Maurey–Jones–Barron’s upper bound of the order ofO(1=

p
n) up to

a bound ofO(1=n2). We investigate the limitations of improvements
of Maurey–Jones–Barron’s upper bound in the general context of
nonlinear approximation of the variable-basis type, i.e., approximation
by linear combinations ofn-tuples of elements of a given set of basis
functions. This approximation scheme has been widely studied: it
includes free-nodes splines (see, e.g., Petrushev [22] and DeVore and
Lorentz [23, Ch. 13]), nonlinear trigonometric approximation (i.e.,
approximation by trigonometric polynomials with free frequencies;
see, e.g., Maiorov [24], Belinskiǐ [25] and DeVore and Temlyakov
[26]), sums of wavelets (see, e.g., DeVore, Jawerth, and Popov [27]),
as well as feedforward multilayer neural networks with a single linear
output unit. In the case of one-hidden-layer networks, a variable basis

corresponds to computational units in the hidden layer. For a larger
number of layers, such a basis becomes more complex, as it depends
on the number of units in the previous hidden layers.

In the variable-basis approximation framework, Maurey–Jones–
Barron’s upper bound can be expressed in terms oftwo norms of
the function to be approximated: 1) a norm in which the accuracy of
approximation is measured, and 2) a norm tailored to the given basis
(e.g., the computational units of a neural network).

We demonstrate the limitations of improvements of Maurey–Jones–
Barron’s upper bound in the case of an orthonormal basis, for which the
norm 2) equalsl1 norm with respect to this basis. We derive tight upper
bounds in terms of both norms 1) and 2). Our results are extensions to
estimates derived by Ku˚rková, Savický, and Hlavá̌cková [8] for finite-
dimensional spaces. From our estimates it follows that for a general
variable basis, Maurey–Jones–Barron’s bound cannot be substantially
improved. In the orthonormal case, it can be improved at most by a
factor dependent on the ratio between the above-mentioned norms, but
the term1=

p
n remains essentially unchanged (it is only replaced by

1=(2
p
n� 1)).

The correspondence is organized as follows. Section II contains
basic concepts and notations concerning feedforward neural networks
and approximation in normed linear spaces. Section III presents tight
bounds on rates of approximation for orthonormal bases. In Section IV,
our results are discussed. All proofs are deferred to Section V.

II. PRELIMINARIES

A. Feedforward Neural Networks

Feedforward neural networks compute parametrized sets of func-
tions dependent on the type of computational units as well as on the
type of their interconnections. We call�-networksone-hidden-layer
feedforward networks with hidden units computing a function� and a
single linear output unit. Thus,�-networks compute functions of the
form

n

i=1

wi�(ai; :)

whereai 2 A � p ( denotes the set of real numbers),�: p� d !
corresponds to acomputational unit, andp andd are the dimensions

of theparameter spaceand theinput space, respectively. We denote by

G� = f�(a; �): a 2 A � pg
the parametrized set of functions corresponding to the computational
unit �.

Perceptrons are the most widespread type of hidden units. Apercep-
tron with anactivation function : ! computes functions of the
form

�((v; b); x) =  (v � x+ b): d+1 � d !

wherev 2 d is aninput weight vectorandb 2 is abias.
Estimates of rates of approximation by feedforward neural networks

as a function of the number of hidden units can be formulated in a more
general context ofvariable-basis approximation.

B. Approximation by Variable-Basis Functions

By linear spacewe mean a linear space over real numbers. IfX is a
linear space, then thedimensionof X is denoted bydim X.

Let (X; k � k) be a Banach space (i.e., a complete normed linear
space) with normk � k, thenBr(k � k) denotes the ball of radiusr with
respect to the normk � k, i.e.,

Br(k � k) = ff 2 X: kfk � rg:



IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 47, NO. 6, SEPTEMBER 2001 2661

When it is clear from the context which norm is considered, we shall
simply writeX instead of(X; k � k). Recall that a Hilbert space is
a complete normed linear space with the norm induced by an inner
product.

If G is a subset ofX andc 2 , then we define

cG = fcg: g 2 Gg
and, forc positive

G(c) = fwg: g 2 G;w 2 ; jwj � cg:
Theclosureof G is denoted bycl G and defined as

cl G = ff 2 X : 8 " > 0 9 g 2 G kf � gk < "g:
G is densein (X; k � k) whencl G = X. (X; k � k) is separablewhen
it has a countable dense subset.

The linear spanof G, which we denote byspanG, consists of all
linear combinations of elements ofG, i.e.,

spanG =

n

i=1

wigi:wi 2 ; gi 2 G; n 2 +

where + denotes the set of positive integers. The set of all linear
combinations of at mostn elements ofG is denoted byspannG, and
defined as

spannG =

n

i=1

wigi: wi 2 ; gi 2 G :

convG denotes theconvex hullof G, consisting of all convex combi-
nations of elements ofG, i.e.,

convG =

n

i=1

aigi: ai 2 [0; 1];

n

i=1

ai = 1; gi 2 G; n 2 + :

convnG is the set of all convex combinations of at mostn elements of
G, i.e.,

convnG =

n

i=1

aigi: ai 2 [0; 1];

n

i=1

ai = 1; gi 2 G :

If M is a subset of a Banach space(X; k � k) andf 2 X, then

kf �Mk = inf
g2M

kf � gk
denotes thedistanceof f from M . Approximation of functions from
a setY by elements of an approximating setM can be investigated in
terms of theworst case error, which is formalized by the concept of
deviation ofY fromM defined as

�(Y; M) = �(Y; M; (X; k � k))
= sup

f2Y

kf �Mk = sup
f2Y

inf
g2M

kf � gk:

Linear approximation theoryinvestigates approximation by linear
subspaces, which are often generated by the firstn elements of a lin-
early independent subsetG of X with a fixed ordering. For example,
whenG is the set of powersfxi�1: i 2 +g, then the linear space
generated by its firstn elements is the set of all polynomials of order
at mostn � 1.

We callnonlinear approximation by variable-basis functionsthe ap-
proximation by linear combinations of alln-tuples of elements of a
given setG. This corresponds to approximation by the setspannG
of all linear combinations of at mostn elements ofG, i.e., approxi-
mation by theunion of at mostn-dimensional subspacesgenerated by
elements ofG. One-hidden-layer feedforward networks with a linear
output unit andn units computing the function� in the hidden layer
belong to this approximation scheme. The set

spannG� =

n

i=1

wi�(ai; �): wi 2 ; ai 2 A � p

consists of all linear combinations of at mostn parametrized functions
�(ai; �) (the variable basis is obtained by varying the parameter vector
of the computational unit). Also multilayer feedforward networks with
a single linear output unit andn units in the last hidden layer belong
to this approximation scheme, but the corresponding setsG are more
complex and depend on the number of units in the previous hidden
layers.

For elements of the convex closure of a bounded subsetG of a
Hilbert space, Maurey (see [5]), Jones [4], and Barron [6] have derived
an upper bound of the order ofO(1=

p
n) on the rate of approximation

by convnG. The following theorem presents this upper bound (see
Barron [6, Lemma 1]) in a slightly reformulated way.

Theorem 1: Let (X; k � k) be a Hilbert space,G its subset, andb
a positive real number such that for everyg 2 G, kgk � b. Then, for
everyf 2 cl convG and for every positive integern

kf � convnGk � b2 � kfk2
n

:

As convnG � spannG, the upper bound given in Theorem 1 also
applies to rates of approximation byspannG. However, whenG is
not closed up to multiplication by scalars,convG is a proper subset
of spanG, and hence alsocl convG is a proper subset ofcl spanG.
Thus, the density ofspanG in (X; k � k) does not guarantee that The-
orem 1 can be applied to all elements ofX.

As convnG(c) � spannG(c) = spannG for any positivec, re-
placing the setG with G(c) = fwg: g 2 G; w 2 ; jwj � cg, we
can apply Theorem 1 to all elements of[c2 cl convG(c). This ap-
proach can be mathematically formulated in terms of a norm tailored
to a setG (in particular, to setsG� corresponding to various computa-
tional units� in feedforward networks), calledG-variation (variation
with respect toG) and defined as the Minkowski functional of the set
cl conv (G [ �G), i.e.,

kfkG = inffc 2 +:
f

c
2 cl conv (G [�G)g:

G-variation has been introduced by Ku˚rková [28] as an extension of
Barron’s [10] concept of variation with respect to half-spaces. It is a
norm on the subspaceff 2 X: kfkG <1g � X. The closure in the
definition depends on the topology induced onX by the normk � k.
WhenX is finite-dimensional, all norms are topologically equivalent
and, thus,G-variation does not depend on the choice of a norm onX.
From the definition ofG-variation it follows that, for everyf 2 X

kfk � sGkfkG; wheresG = sup
g2G

kgk:

Intuitively, kfkG shows us how much the setG should be “dilated,”
so thatf is in the closure of the convex symmetric hull of the “dilated”
set.G-variation is a generalization of two concepts: total variation (see,
e.g., Kolmogorov and Fomin [29, p. 328]) andl1 norm. WhenG is an
orthonormal basis of a separable Hilbert space(X; k � k), thenl1norm
with respect toG, denoted byk � k1; G, is defined as

kfk1;G =
g2G

jf � gj:

Sok � k1;G is a norm onff 2 X: kfk1;G < 1g.

Proposition 1: Let (X; k � k) be a separable Hilbert space andG be
its orthonormal basis. Thenk � kG = k � k1;G.

Using Proposition 1, we obtain the following upper bound as a spe-
cial case of Ku˚rková’s [28] (see also [8]) reformulation of Maurey–
Jones–Barron’s theorem in terms ofG-variation.
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Theorem 2: Let (X; k � k) be a separable Hilbert space andG its
orthonormal basis. Then, for everyf 2 X and every positive integern

kf�span
n
Gk � kfk2

1; G�kfk2
n

=
kfk1;Gp

n
1� kfk2

kfk2
1; G

:

As 0 2 spannG, we have, for allf 2 X, kf � spannGk � kfk,
which implies the trivial upper boundkfk onkf � spannGk. Hence,
whenkfk is such that

kfk2 < kfk21;G � kfk2
n

or, equivalently,

kfk
kfk1;G <

1p
n+ 1

the trivial upper bound,kfk, is better than the upper bound given in
Theorem 2. For example, ifkfk1;G = 1, then the trivial upper bound
is better whenkfk < 1=

p
n+ 1.

The upper bound in Theorem 2 can also be formulated in terms of
deviation. We denote thedeviation fromspannG by �G; n, i.e.,

�G; n(Y ) = �(Y; spannG):

The following properties of�G; n can be easily derived from its defini-
tion.

Proposition 2: Let (X; k � k) be a Banach space andG andY its
subsets. Then, for all positive integersn

i) for any c 2 , �G; n(cY ) = jcj�G; n(Y );

ii) �G; n(cl Y ) = �G; n(Y );

iii) �G; n+1(Y ) � �G; n(Y );

iv) if Y 0 � Y , then�G; n(Y
0) � �G; n(Y ).

Theorem 2 implies the following upper bounds on�G; n of balls in
l1 norm with respect toG and on�G; n of their subsets defined by a
constraint on the value of the normk � k.

Corollary 1: Let (X; k � k) be a separable Hilbert space,G its or-
thonormal basis, andr; b real numbers such that0 � r � b. Then, for
every positive integern

i) �G; n(Bb(k � k1;G)) � bp
n

;

ii) �G; n(ff 2 Bb(k � k1;G): kfk � rg) � bp
n

1� r

b
.

Thus, balls of radiusb in l1 norm with respect toG can be approxi-
mated byspannG with accuracyb=

p
n, independently of the number

of variables of the functions in the spaceX. However, it should be noted
that the condition of being in the unit ball inl1 norm with respect toG
may become more and more constraining with an increasing number
of variables [8].

In the next section, we shall investigate how tight are the upper
bounds given in Theorem 2 and Corollary 1.

III. T IGHT BOUNDS ON RATES OF APPROXIMATION FOR

ORTHONORMAL BASES

LetG be an orthonormal basis of an infinite-dimensional separable
Hilbert space. We shall show that, in this case, the maximum possible
improvement of the bound in Theorem 2 lies in the replacements of the
factor

1� kfk2
kfk2

1; G

with 1� kfk2
kfk2

1;G

and of the factor
kfk1;Gp

n
with

kfk1;G
2
p
n� 1

:

Whenf is a finite linear combination of elements of an orthonormal
subsetG of a Hilbert space, thenkf � spannGk can be easily cal-
culated. The proof of the following lemma is a straightforward conse-
quence of the definition ofspannG and the orthonormality ofG.

Lemma 1: Let (X; k � k) be a Hilbert space,G its orthonormal
subset, andf = k

i=1
wigi, where, for alli = 1; . . . ; k, wi 2

andgi 2 G. Then, for all positive integersn < k

kf � spannGk = min
i2I

wigi : card I = k � n :

Using a simple proof technique based on a rearrangement of an or-
thonormal basis of a separable Hilbert space, Mhaskar and Micchelli
[19] have obtained bounds on�G; n in terms ofl1 norm with respect to
G. They have shown that, for all positive integersn

b

2
p
n
� �G; n(Bb(k � k1;G)) � bp

n+ 1
:

Mhaskar and Michelli’s estimates have been derived using simple ar-
guments, but they are weaker than the estimates obtained by Maurey,
Jones, and Barron, as they are formulated only in terms ofk � k1;G
without taking into account the value ofk � k.

For finite-dimensional Hilbert spaces, Ku˚rková, Savický, and
Hlavá̌cková [8] have improved Mhaskar and Michelli’s upper bound
up to b=(2

p
n), and have shown that this bound is tight when

dimX � 2n. Moreover, they have derived a tight estimate of the
deviation�G; n from spannG of sets defined by constraints on both
norms,l1 norm with respect toG, andk � k.

The following theorems extend the results in [8] to infinite-dimen-
sional separable Hilbert spaces. Their proofs exploit ideas contained in
the papers by Mhaskar and Micchelli [19] and by Ku˚rková, Savický,
and by Hlavá̌cková [8].

Theorem 3: Let (X; k � k) be an infinite-dimensional separable
Hilbert space andG its orthonormal basis. Then, for every positive
real numberb and every positive integern

�G; n(Bb(k � k1;G)) = b

2
p
n
:

WhenG is a countable infinite orthonormal basis, Theorem 3 im-
proves the upper bound i) in Corollary 1 up to an exact value of the
deviation fromspannG of balls in l1 norm with respect toG. In con-
trast to Corollary 1 ii), which expresses an upper bound in terms of both
kfk1;G, andkfk, Theorem 3 does not takekfk into account. However,
even without using the value ofkfk, it gives a better bound than Corol-
lary 1 ii) when the ratiokfk=kfk1;G is sufficiently small

if
kfk

kfk1;G <

p
3

2
; then

kfk1;G
2
p
n

<
kfk2

1;G � kfk2
n

:

The following theorem gives, forG orthonormal, the maximum im-
provement of Corollary 1 ii) achievable in terms ofk � k1;G andk � k.

Theorem 4: Let (X; k � k) be an infinite-dimensional separable
Hilbert space,G its orthonormal basis, andb; r real numbers such that
0 � r � b. Then, for every positive integern � 2

i) if r

b
� 1p

2n�1 , then

b

4
p
n�1

1� r2

b2
� �G; n(ff 2 X: kfk1;G = b; kfk = rg)

� b

2
p
n�1

1� r2

b2
;
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ii) if
p
n � p

n� 1 � r

b
< 1p

2n�1 , then

r

2
p
2
<�G;n(ff 2 X: kfk1;G = b; kfk = rg)

� b

2
p
n� 1

1� r2

b2
;

iii) if r

b
<
p
n � p

n� 1, then

r

2
p
2
< �G; n(ff 2 X: kfk1;G = b; kfk = rg) � r:

Theorem 4 i) and iii) give, up to a constant factor, the best pos-
sible upper bounds onkf � spannGk that can be obtained in terms
of kfk1;G andkfk.

IV. DISCUSSION

Our results contribute to investigation of tightness of the upper
bounds on rates of approximation by neural networks derived by
Maurey (see [5]), Jones [4], and Barron [6]. We have studied such
bounds in the context of nonlinear approximation of the variable-basis
type, which includes feedforward neural networks with a single linear
output unit. For approximation by a variable orthonormal basisG of
an infinite-dimensional separable Hilbert space we have derived tight
bounds in terms of two norms: the norm in which the accuracy of the
approximation error is measured, and thel1 norm with respect toG.

When the setG of variable-basis functions is not orthonormal, the
technique used to prove the results of Section III cannot be applied.
In the special case of a variable basis corresponding to perceptrons
with a sigmoidal activation function, Barron [10] and Makovoz [14]
have derived tight bounds. Both have used probabilistic arguments, in
[14] combined with concepts from metric entropy theory. The applica-
tion of metric entropy tools to derive tight bounds for perceptron net-
works with a sigmoidal activation function has been further developed
by Kůrková and Sanguineti [20].

From our results it follows that the upper bound obtained by Maurey,
Jones, and Barron (stated here in the form of Theorem 1) cannot be es-
sentially improved, unless some additional properties of the set of basis
functions are guaranteed (see, e.g., Makovoz [14]). Thus, our results
contribute to clarifying the issues recently discussed in [21], [31], and
[32].

V. PROOFS

A. Proof of Proposition 1

We first check thatk � kG � k � k1;G. LetG = fgi: i 2 +g. Then
everyf 2 X can be expressed as1

i=1
(f � gi)gi. Form 2 +, set

fm =

m

i=1

(f � gi)gi:

If b = kfk1;G, then, for all m 2 +, fm 2 convG(b).
f=limm!1 fm in k � k, and sof is in the closure ofconvG(b) with
respect tok � k. Hence,kfkG � b = kfk1;G.

We now verify thatk�kG�k�k1;G. Letb"<kfkG+" for some">0,
then, by the definition ofkfkG, there exists a sequenceffi: i2 +g
such thatfi 2 convG(b") for all i 2 +, andf = limi!1 fi in
k � k. Form 2 +, set

fm; i =

m

j=1

(fi � gj)gj and fm =

m

j=1

(f � gj)gj :

Since the projection onto the m-dimensional subspace
spanfg1; . . . ; gmg is continuous (see, e.g., [30, p. 145]), we have

limi!1 fm; i = fm in k � k. As all norms on a finite-dimensional
space are topologically equivalent, we also havelimi!1 fm; i = fm
in k � k1;G. Using the triangle inequality, we get

m

j=1

(jfm; i � gj j � jfm � gj j) �
m

j=1

j(fm; i � fm) � gj j

hence

lim
i!1

m

j=1

jfm; i � gj j =
m

j=1

jfm � gj j

for all m 2 +. Thus, for all" > 0, we have

kfk1;G � b" < kfkG + "

which impliesk � k1;G � k � kG.

B. Proof of Theorem 3

By Proposition 2 i)

b�G;n(B1(k � k1;G)) = �G; n(Bb(k � k1;G)):
So it is sufficient to verify that�G; n(B1(k � k1;G)) = 1=(2

p
n).

To derive the upper bound, letf 2 B1(k � k1;G) and, using the
same trick as Mhaskar and Micchelli [19], reorderG in such a way that
f = 1

i=1
wigi, where, for alli 2 +, jwij � jwi+1j andgi 2 G.

Set

fn =

n

i=1

wigi:

By Lemma 1

kf � spannGk2 �kf � fnk2

=

1

i=n+1

w2i � jwn+1j
1

i=n+1

jwij:

As 1
i=1

jwij = 1, we have

1

i=n+1

jwij � 1� njwn+1j

and hence

kf � spannGk2 � jwn+1j(1� njwn+1j):
Settingt = jwn+1j, we get

�2G;n(B1(k � k1;G)) � t(1� nt):

The right-hand side of this inequality achieves its maximum, equal to
1=(4n), for t = 1=(2n). Thus,

�G; n(B1(k � k1;G)) � 1

2
p
n
:

To verify the lower bound, let

fn =
1

2n

2n

i=1

gi:

Thenkfnk1;G = 1 and�G; n(B1(k � k1;G)) � kfn � spannGk. By
Lemma 1 and the orthonormality ofG

kfn � spannGk =
1

2n
i2I

gi
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wherecard I = n. So

kfn � span
n
Gk =

1

2
p
n
:

C. Proof of Theorem 4

By Proposition 2 i)

�G;n(ff 2 X: kfk1; G = b; kfk = rg)
= b�G;n(ff 2 X: kfk1;G = 1; kfk = r=bg):

Thus, it is sufficient to verify the statement of the theorem forb = 1.
First, we derive the upper bound. Letf 2X be such thatkfk1;G=1

andkfk = r. Using the same trick as Mhaskar and Micchelli [19],
reorderG in such a way thatf can be represented asf = 1

i=1
wigi,

where, for alli 2 +, jwij � jwi+1j andgi 2 G. As

kfk2 =

1

i=1

w2i � jw1jkfk1;G = jw1j

we havejw1j � kfk2 = r2.
Set

f 0 =

1

i=2

wigi

G0 = G� fg1g
and

h0 =

n

i=2

wigi:

By Lemma 1 and Theorem 3

kf 0 � spann�1G
0k �kf 0 � h0k � kf 0k1;G

2
p
n� 1

=
kfk1;G � jw1j

2
p
n� 1

=
1� jw1j
2
p
n� 1

:

Settingh=w1g1+h0, we geth2spannG andkf�hk=kf 0�h0k.
Hence,

kf � spannGk �
1� jw1j
2
p
n� 1

� 1� r2

2
p
n� 1

:

As 0 2 spannG, for everyf 2 X we have the trivial upper bound
kf � spannGk � kfk = r. It is easy to check that

r <
1� r2

2
p
n� 1

if and only if 0 � r <
p
n�p

n� 1:

So in both the cases i) and ii), we have the upper bound
(1� r2)=(2

p
n� 1), whereas in the case iii), we have the upper

boundr.
To derive the lower bound, for every positive integerk and every real

numberc, consider

fck =
1

k
(1 + (k � 1)c)g1 +

k

i=2

(1� c)gi :

It is easy to check that, for anyc 2 [0; 1], kfckk1;G = 1, and for
c2 = (kr2 � 1)=(k� 1), kfckk = r. For anyk � 1=r2, define

fk = fck; where c =
kr2 � 1

k � 1

(asr2 � 1, we havec 2 [0; 1]). Thenkfkk1;G = 1 andkfkk = r.

By Lemma 1 and the definition offk, we have, for every2 � n < k

kfk � spannGk =

p
k � n

k
(1� c)

=

p
k � n

k
1� kr2 � 1

k � 1

=

p
k � n

k � 1

1� r2

1 +
kr2 � 1

k � 1

:

It is easy to check that the expression
p
k � n=(k � 1) achieves its

maximum, equal to1=(2
p
n� 1), for k = 2n � 1.

Now, we need to distinguish between two cases:r � 1=
p
2n� 1

(corresponding to item i)) andr < 1=
p
2n� 1 (corresponding to the

items ii) and iii)). In the first case, setk= 2n�1. As 2n�1� 1=r2,
we havek � 1=r2; thus,fk is properly defined. Asr2 � 1, we have
(kr2 � 1)=(k� 1) � 1, and hence

kfk � spannGk =

p
k � n

k � 1

1� r2

1 + kr �1

k�1

� 1

2
p
n� 1

1� r2

2
� 1� r2

4
p
n� 1

:

In the second case, when2n � 1 < 1=r2, setk = d1=r2e. Then
k � 1=r2; thus,fk is properly defined and, moreover,2n � k. Now

kfk � spannGk =

p
k � n

k
1� kr2 � 1

k � 1

= r
k � n

k

1

r
p
k
� k � 1=r2

k(k � 1)
:

As 1=r2 > k � 1 and2n � k, we have

kfk � spannGk >r 1� n

k

k � 1

k
� 1

k(k � 1)

= r 1� n

k

k � 2

k(k � 1)
>

rp
2

1� 2

k
:

As n � 2, we havek � 4, and so

rp
2

1� 2

k
� r

2
p
2
:
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