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Classification by Sparse Neural Networks
Věra Kůrková and Marcello Sanguineti

Abstract— The choice of dictionaries of computational units
suitable for efficient computation of binary classification tasks is
investigated. To deal with exponentially growing sets of tasks with
increasingly large domains, a probabilistic model is introduced.
The relevance of tasks for a given application area is modeled by
a product probability distribution on the set of all binary-valued
functions. Approximate measures of network sparsity are stud-
ied in terms of variational norms tailored to dictionaries of
computational units. Bounds on these norms are proven using
the Chernoff–Hoeffding bound on sums of independent random
variables that need not be identically distributed. Consequences
of the probabilistic results for the choice of dictionaries of
computational units are derived. It is shown that when a priori
knowledge of a type of classification tasks is limited, then the
sparsity may be achieved only at the expense of large sizes of
dictionaries.

Index Terms— Binary classification, Chernoff–Hoeffding
bound, dictionaries of computational units, feedforward
networks, measures of sparsity.

I. INTRODUCTION

IT HAS long been known that one-hidden-layer (shallow)
networks with computational units of many common types

can approximate up to any desired accuracy every reasonable
function on a compact domain (see [1]–[4] and the references
therein) and that such networks can exactly compute any
function on a finite domain [5]. In particular, they can perform
any binary classification task.

Theorems on universal approximation and representation
properties of feedforward networks only guarantee the capa-
bility of expressing wide classes of functions, but do not deal
with the complexity of the approximating networks. Proofs of
these theorems assume that the number of network units is
unbounded or, in the case of a finite domain, as large as the
size of the domain. For large domains, implementations of
such networks might not be feasible.
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Proper choice of network architecture and type of units can,
in some cases, considerably reduce network complexity, and
thus enable the efficient computation of functions on large
and high-dimensional domains. For example, classification of
points in the d-dimensional Boolean cube {0, 1}d according
to the parity of the numbers of 1’s cannot be computed by
a Gaussian support vector machine (SVM) network with less
than 2d−1 support vectors [6] (i.e., cannot be computed by a
shallow network with less than 2d−1 Gaussian SVM units).
On the other hand, it is easy to show that the parity function
(as well as any generalized parity, the set of which forms the
Fourier basis) can be computed by a shallow network with
only d + 1 Heaviside perceptrons (see [7, p. 600], [8]).

In addition, one prefers to choose computational units allow-
ing computation of given tasks by reasonably sparse networks.
The basic measure of the sparsity of a shallow network with
a single linear output is the number of units in the hidden
layer, which can be studied in terms of the number of nonzero
output weights. The number of nonzero entries of a vector in
R

n is often called the “l0-pseudonorm” although actually not
a pseudonorm (as it is not homogenous and has a “unit ball”
which is unbounded and nonconvex). Thus, the minimization
of the number of network units (corresponding to nonzero
entries of the network) is a difficult nonconvex optimization
task. Minimization of “l0-pseudonorm.” has been studied in
signal processing, where such minimization was shown to be
NP-hard in some cases [9].

Among l p-functionals with convex unit balls, l1 is the
closest one to “l0-pseudonorm.” There are other reasons for
using l1-norm. In neurocomputing, it has been used as a
stabilizer in weight-decay regularization techniques [10]–[13]
and the l1-norm also plays a role of a stabilizer in LASSO
regularization [14] and it has also been studied in compressed
sensing [15]–[18]. For other approaches to regularization in
learning see [19]–[21] and the references therein.

Networks with large l1-norms of output-weight vectors have
either large numbers of units or some of the weights are large.
Either of these properties is undesirable: the implementation
of networks with large numbers of units might not be feasible,
while large output weights can lead to instability of computa-
tion. The minimum of the l1-norms of output-weight vectors
of all networks computing a given function is bounded from
below by a variational norm tailored to the type of network
units [7], and this variational norm is a critical factor in esti-
mates of upper bounds on network complexity [8], [13], [22].

Even on domains of moderate sizes, there are an enor-
mous number of functions representing multiclass or binary
classifications. For example, when the size of a domain is
equal to 80, the number of classifications into 10 classes is
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1080 and when its size is 267, then the number of binary
classification tasks is 2267. These numbers are larger than the
estimated number 1078 of atoms in the observable universe
(see [23]). Obviously, most functions on large domains rep-
resent classifications, which are not likely to be relevant for
neural network computation, as they do not model any task of
practical interest.

In this paper, we propose a probabilistic model of relevance
for binary classification tasks. We assume that there are known
probabilities that specify, for each point in the domain and
each class, the probability that the point belongs to the class.
Points in a finite domain in R

d are typically vectors of
features, for which some prior knowledge might be available
about probabilities that the presence of such features leads
to a property described by one of the classes. For example,
when points in a domain represent vectors of some medical
symptoms, certain values of these symptoms might indicate a
high probability of some diagnosis.

To identify and explain the design of networks suitable
for computing tasks characterized by probability distributions,
we investigate the network simplicity achievable by using var-
ious dictionaries of computational units. We analyze network
simplicity in terms of its approximate measures of sparsity
and estimate the minima of l1-norms of output-weight vectors
using geometrical properties of variational norms tailored to
the computational units. In order to describe the properties of
networks suitable for efficient computation of tasks modeled
by probability distributions, we study the distributions of
variational norms. On large domains, various counterintuitive
properties of high-dimensional geometry occur.

We analyze the consequences of the concentration of mea-
sure phenomena. Such phenomena imply that with increasing
sizes of function domains, correlations between network units
and functions tend to concentrate around their mean or median
values. We derive lower bounds on the variational norms of
functions to be computed and on the l1-norms of output-weight
vectors of networks computing these functions. To obtain
such lower bounds, we apply the Chernoff–Hoeffding bound
[24, Th. 1.11] on sums of independent random variables
not necessarily identically distributed. We show that when
a priori knowledge of classification tasks is limited, then the
sparsity can only be achieved with large sizes of dictionaries.
On the other hand, when such given knowledge is biased,
then there exist functions with which most randomly chosen
classification tasks on a large domain are highly correlated.
If such functions are close to some elements of a dictionary,
then most tasks can be well approximated by sparse networks
with units from such a biased dictionary.

A preliminary version of some results appears in a regional
Czech-Slovak conference proceedings [25].

This paper is organized as follows. In Section II, we
introduce basic concepts and notations. In Section III, we dis-
cuss various measures of network sparsity (“l0-pseudonorm,”
l1 norm, and the variational norms tailored to dictionaries) and
we analyze their relationships. In Section IV, we introduce
a probabilistic model of classification tasks and, by using
the Chernoff–Hoeffding Bound, we derive geometrical prop-
erties of functions satisfying given probability constraints.

In Section V, we derive estimates of probability distributions
of values of variational norms and analyze their consequences
for the choice of dictionaries suitable for tasks modeled by
given probabilities. Section VI contains some conclusions.
In Section VII, we discuss our results.

II. PRELIMINARIES

A feedforward network with a single linear output can
compute input–output functions from the set

spanG :=
{

n∑
i=1

wi gi

∣∣∣∣wi ∈ R, gi ∈ G, n ∈ N

}

where G, called a dictionary, is a parameterized family of
functions. In networks with one hidden layer (called shallow),
G is formed by functions computable by a given type of
computational units, whereas, in networks with several hid-
den layers (called deep), it is formed by combinations and
compositions of functions representing units from lower layers
(see [26], [27]).

We denote by

spannG :=
{

n∑
i=1

wi gi

∣∣∣∣wi ∈ R, gi ∈ G

}

a set of functions computable by networks with at most n units
in the last hidden layer.

Dictionaries are parameterized families of functions of the
form

Gφ(X, Y ) := {φ(·, y) : X → R|y ∈ Y }
where φ : X ×Y → R is a function of two variables: an input
vector x ∈ X ⊆ R

d and a parameter vector y ∈ Y ⊆ R
s .

When the set of parameters is the whole R
s , we write shortly

Gφ(X).
For a domain X ⊂ R

d , we denote by

F(X) := { f | f : X → R}
the set of all real-valued functions on X and by

B(X) := { f | f : X → {−1, 1}}
the set of all functions on X with values in {−1, 1}.

In practical applications, domains X ⊂ R
d are finite, but

their sizes cardX and/or input dimensions d can be quite large.
It is easy to see that when cardX = m and X = {x1, . . . , xm}
is a linear ordering of X , then the mapping ι : F(X) → R

m

defined as ι( f ) := ( f (x1), . . . , f (xm)) is an isomorphism.
Therefore, on F(X), we have the Euclidean inner product
defined as

� f, g� :=
∑
u∈X

f (u)g(u)

and the Euclidean norm � f � := √� f, f �.
In theoretical analysis of approximation capabilities of

neural networks, it has to be taken into account that the
approximation error � f − spannG� in any norm �.� can be
made arbitrarily large by multiplying f by a scalar. Indeed,
for every c > 0, one has

�c f − spannG� = c� f − spann G�.
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Thus, approximation errors have to be studied either in sets
of normalized functions or in sets of functions of a given
fixed norm. Thus, it is convenient to consider binary-valued
functions with range {−1.1} instead of {0, 1}. All functions in
B(X) have norms equal to

√
cardX .

III. SPARSE NETWORK APPROXIMATION

In this section, we investigate approximate measures of
network sparsity.

Let

f =
m∑

i=1

wi gi (1)

be a representation of a function f : X → R as an
input–output function of a shallow network with a single linear
output and units from a dictionary G. On infinite compact
domains or on R

d , many dictionaries formed by popular
computational units are linearly independent (see [28]). How-
ever, on finite domains, often representations of the form (1)
are not unique. Linearly dependent dictionaries are called
overcomplete and networks computing the same input–output
functions are called functionally equivalent. Nonuniqueness of
representations of the form (1) provides flexibility of repre-
sentations, which can, in some cases allow an improvement
of sparsity. Also, in signal processing, where representations
of signals as linear combinations of their elements called
atoms have been studied, overcomplete dictionaries are often
advantageous [29], [30].

The basic measure of the sparsity of a network computing
the function (1) is the number of nonzero output weights
among w1, . . . , wm . In applied mathematics, the number of
nonzero entries of a vector w ∈ R

m is called “l0-pseudonorm”
and denoted �w�0. The quotation marks are used because l0
is neither a norm nor a pseudonorm. Although it satisfies
the triangle inequality, it does not satisfy the homogeneity
property of a norm �λx� = |λ|�x� for all λ. The quantity
�w�0 is always an integer, and moreover, the “unit ball”
{w ∈ R

n|�w�0 ≤ 1} is nonconvex and unbounded. It is equal
to the union of all 1-D subspaces of R

m . For any r > 0,
the ball of radius r is equal to spankR

m , where k = �r�.
Hence, searching for representations as input–output func-

tions of networks with smallest “l0-pseudonorms” of vectors
of output weights is a nonconvex optimization task. In signal
processing, sparse representations of as few atoms as possible
have been investigated. It was shown that in some cases
solving this nonconvex optimization problem is NP-hard [9].
Finding the sparsest solution to a general underdetermined
system of equations is NP-hard [31].

“l0-pseudonorm” can be approximated by l p-functionals as

lim
p→0

�w�p = �w�0

where

�w�p
p =

m∑
i=1

|wi |p.

Among l p-functionals, the one with the smallest p ∈ [0,∞]
having convex unit ball {w ∈ R

n |�w�p ≤ 1} is l1 (see Fig. 1).

Fig. 1. Shapes of the balls in “l0-pseudonorm” and in various lp -norms,
0 < p ≤ ∞.

In neurocomputing, l1-norm has been used as a stabilizer in
weight-decay regularization [12]. Moreover, the optimization
problem associated with the search of the representation with
minimal l1-norm is much easier to handle than the one related
to “l0-pseudonorm” [32], [33]. In some cases, a solution with
the minimal l1-norm is also the sparsest solution [34].

The most important property of l1-norm for investigation
of network complexity is its relationship to a norm tailored
to a dictionary called G-variation. This norm plays a role
of a critical factor in estimates of rates of approximation by
networks with increasing “l0-pseudonorms” of output weights
and it minimizes l1-norms of output-weight vectors over all
expressions (1) of a given function f as an input–output
function of a network with units from a dictionary G. Some
insight into efficiency of computation of a function f by
networks with units from a dictionary G can be obtained from
investigation of minima of l1-norms of all the vectors from the
set

W f (G)=
{

w = (w1, . . . , wn)

∣∣∣∣ f =
k∑

i=1

wi gi , gi ∈ G, n ∈ N

}
.

Minima of l1-norms of elements of W f (G) are bounded
from below by G-variation. It is defined for a bounded subset
G of a normed linear space (X , �.�) as

� f �G := inf

{
c ∈ R+

∣∣∣ f

c
∈ clX conv(G ∪ −G)

}
where −G := {−g|g ∈ G}, clX denotes the closure with
respect to the topology induced by the norm � · �X , and
conv is the convex hull. Variation with respect to Heavi-
side perceptrons (called variation with respect to half-spaces)
was introduced in [35] and extended to general dictionaries
in [36]. G-variation is a generalization of the concepts of
total variation and l1-norm. For d = 1, variation with respect
to half-spaces coincides with total variation up to a constant
(see [35] and [37]). The concept of G-variation has been used
as a tool for investigation of approximation and optimization
by neural networks (see [38]–[43] and the references therein).
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Fig. 2. Unit ball in G-variation norm, for G = {g1, g2, g3, g4}, and geometric
construction to determine the G-variation norm of an element outside such a
ball.

In Fig. 2, the concept of G-variation is illustrated by an
example of a finite dictionary G with four elements.

As G-variation is a norm, it can be made arbitrarily large
by multiplying a function by a scalar. Also, errors in an
approximation of scalar multiples of a given function can be
made arbitrarily large or small with proper choices of scalars.
Indeed, for every c > 0

�c f − spann G� = c� f − spann G�.
Thus, both G-variation and errors in approximation by spannG
have to be studied either for sets of normalized functions or for
sets of functions of a given fixed norm. In this paper, we focus
on {−1, 1}-valued functions on domains of size m, which have
all norms equal to

√
m.

For finite dictionaries, the minimum of l1-norms of
output-weight vectors of shallow networks with units from G
computing f is equal to � f �G . The next proposition follows
directly from the definition of G-variation (see [44]).

Proposition 3.1: Let G be a finite subset of (X , �.�) with
cardG = k. Then, for every f ∈ X

� f �G = min
{�w�1|w ∈ W f (G)

}
= min

{
�w�1

∣∣∣∣ f =
k∑

i=1

wi gi , wi ∈ R, gi ∈ G

}
.

Thus, � f �G is equal to the smallest l1-norm of a represen-
tation of a function f as a network with linear output and one
hidden layer of units from G. In contrast to “l0-pseudonorm,”
l1-norm can be minimized by various weight-decay regular-
ization algorithms.

Moreover, G-variation and, thus, also l1-norms of
output-weight vectors of all representations of a function
f in the form (1) play roles of critical factors in upper
bounds on rates of approximation of f by sparse networks
with increasing “l0-pseudonorms.” This follows from the
Maurey–Jones–Barron theorem [45]. Here, we state a spe-
cial case of reformulation of this theorem in terms of G-

variation from [22], [36]) for the finite dimensional Hilbert
space F(X) = { f : X → R} which is isometric to R

cardX .
Theorem 3.2: Let X ⊂ R

d be finite, ∅ �= G ⊆ F(X),
sG := maxg∈G �g�, and f ∈ F(X). Then, for every integer
n ≥ 1, there is a function fn ∈ spanG such that � fn�0 ≤ n
and

� f − fn� ≤ sG� f �G√
n

.

On the other hand, when G-variation of a function is
large, then by Proposition 3.1, any representation of f as an
input–output function of a network with a linear output and
units from G, must have large number of units or some of
output weights must be large. This means that a dictionary G
is not well chosen for computation of f . Such computation
would require unmanageably large network or be unstable due
to large output weights.

To derive lower bounds on G-variation, we employ the geo-
metric properties proven in [22] and [44] via the Hahn–Banach
theorem. By G⊥ is denoted the orthogonal complement of G
in the Hilbert space F(X).

Theorem 3.3: Let (X , �.�X ) be a Hilbert space and G its
bounded subset. Then, for every f ∈ X \ G⊥

� f �G ≥ � f �2

supg∈G |�g, f �| .

Theorem 3.3 shows that functions which are “nearly orthog-
onal” to all elements of a dictionary G have large G-variations.
By Proposition 3.1 computation of such functions requires
large numbers of hidden units or large output weights. There-
fore, for a given class of tasks to be computed, it is desirable to
choose a dictionary in such a way that most functions from the
class are correlated with some elements from the dictionary or
with a linear combination of a small number of its elements.

IV. PROBABILISTIC BOUNDS

In this section, we investigate the distribution of variational
and l1-norms of binary-valued functions randomly selected
with respect to probability distributions modeling likelihood
that functions represent classification tasks from a given appli-
cation area. When domains are large, various concentration
phenomena occur. We analyze their consequences for the
choice of dictionaries.

When we do not have any prior knowledge about a type
of classification tasks to be computed, we have to assume
that a network from the class has to be capable to compute
any uniformly randomly chosen function on a given domain.
Often, in practical applications, many binary-valued functions
are not likely to represent tasks of interest. In such cases,
some knowledge is available that can be expressed in terms of
a discrete probability measure on the set of all functions on
X .

For a finite domain X = {x1, . . . , xm}, a function f in
B(X) can be represented as a vector ( f (x1), . . . , f (xm)) ∈
{−1, 1}m ⊂ R

m . We assume that for each xi ∈ X , there is
a known probability pi ∈ [0, 1] of f (xi ) = 1. For p =
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(p1, . . . , pm), we define ρp : B(X) → [0, 1] such that for
every f ∈ B(X)

ρp( f ) :=
m∏

i=1

ρp,i ( f ) (2)

where ρp,i ( f ) := pi if f (xi ) = 1 and ρp,i ( f ) := 1 − pi if
f (xi) = −1. It is easy to verify that ρp is a product probability
measure on B(X).

The set F(X) is isometric to the Euclidean space R
cardX and

B(X) to the discrete cube {−1, 1}cardX . When cardX is large,
various concentration of measure phenomena occur [46], [47].
To obtain estimates of distributions of inner products of any
fixed function h ∈ B(X) with functions randomly chosen from
B(X) with probability ρp , we use the Chernoff–Hoeffding
bound on sums of independent random variables, which do
not need to be identically distributed [24, Th. 1.11].

Theorem 4.1 (Chernoff–Hoeffding Bound): Let m be a pos-
itive integer, Y1, . . . , Ym independent random variables with
values in real intervals of lengths c1, . . . , cm , respectively,
ε > 0, and Y := ∑m

i=1 Yi . Then,

Pr (|Y − E(Y )| ≥ ε) ≤ e
− 2ε2∑m

i=1 c2
i .

For a function h ∈ B(X) and p = (p1, . . . , pm), where
pi ∈ [0, 1], we denote by

μ(h, p) := E p(�h, f �| f ∈ B(X))

the mean value of the inner products of h with f randomly
chosen from B(X) with the probability ρp . The next theo-
rem estimates the distribution of these inner products. For a
function h, we denote h◦ := h/�h�.

Theorem 4.2: Let X = {x1, . . . , xm} ⊂ R
d , p =

(p1, . . . , pm) be such that pi ∈ [0, 1], i = 1, . . . , m, and
h ∈ B(X). Then, the inner product of h with f randomly
chosen from B(X) with a probability ρp( f ) satisfies for every
λ > 0

1) Pr(|� f, h� − μ(h, p)| > mλ) ≤ e− mλ2
2

2) Pr(|� f ◦, h◦� − μ(h, p)

m
| > λ) ≤ e− mλ2

2 .

Proof: Let Fh : B(X) → B(X) be an operator composed
of sign-flips mapping h to the constant function equal to 1,
i.e., Fh(h)(xi ) = 1 for all i = 1, . . . , m. Let p(h) =
(p(h)1, . . . , p(h)m) be defined as p(h)i = pi if h(xi ) = 1
and p(h)i = 1 − pi if h(xi ) = −1. The inverse operator F−1

h
maps the random variable Fh( f ) ∈ B(X) such that

Pr (Fh( f )(xi ) = 1) = p(h)i

to the random variable f ∈ B(X) such that

Pr ( f (xi ) = 1) = pi .

Since the inner product is invariant under sign flipping, for
every f ∈ B(X), we have � f, h� = �Fh( f ), (1, . . . , 1)� =∑m

i=1 Fh( f )(xi ). Thus, the mean value of the sum of ran-
dom variables

∑m
i=1 Fh( f )(xi ) has the mean value μ(h, p).

Applying to this sum the Chernoff–Hoeffding bound stated in
Theorem 4.1 with c1 = · · · = cm = 2 and ε = mλ, we get

Pr

(∣∣∣∣∣
m∑

i=1

Fh( f )(xi ) − μ(h, p)

∣∣∣∣∣ > mλ

)
≤ e− mλ2

2 .

Hence,

Pr(|� f, h� − μ(h, p)| > mλ) ≤ e− mλ2
2

which proves 1). 2) follows from 1) as all functions in B(X)
have norms equal to

√
m. �

Theorem 4.2 shows that when the domain X is large, most
inner products of any given function with functions randomly
chosen from B(X) with a probability ρp are concentrated
around their mean value. For example, setting λ = m−1/4,
we get e−(mλ2/2) = e−((m−1/2)/2) which is decreasing expo-
nentially fast with increasing size m of the domain.

When G is chosen, in such a way, that it contains a function
h, for which the mean value μ(h, p) is large, then most
randomly chosen functions are correlated with h and so can
be well approximated by h. Such dictionary is a good choice
for performing classification tasks described by the probability
ρp . A dictionary G is also suitable for a given task when such
function h can be well approximated by a small network with
units from G. In the next section, we analyze the case when
the mean values μ(g, p) are small for all functions in G.

V. SUITABILITY OF DICTIONARIES

In this section, we analyze the properties of dictionar-
ies suitable for efficient computing of classification tasks
characterized by prior knowledge in the form of probability
distributions.

Assuming that for p = (p1, . . . pm), a probability measure
ρp on B(X) is given, we first calculate for any function
h ∈ B(X), the mean value μ(h, p) of its inner products with
functions randomly chosen with probability ρp .

Proposition 5.1: Let h ∈ B(X) and p = (p1 . . . , pm),
where pi ∈ [0, 1] for each i = 1, . . . , m. Then, for a function
f randomly chosen in B(X) according to ρp , the mean value
of � f, h� satisfies

μ(h, p) =
∑
i∈Ih

(2 pi − 1) +
∑
i∈Jh

(1 − 2 pi )

where Ih = {i ∈ {1, . . . , m}|h(xi ) = 1} and Jh = {i ∈
{1, . . . , m}|h(xi ) = −1}.

Proof: Let p(h) = (p(h)1, . . . , p(h)m) be defined as
p(h)i = pi if h(xi ) = 1 and p(h)i = 1 − pi if h(xi ) = −1.
Then, μ(h, p) = ∑m

i=1 p(h)i −∑m
i=1(1− p(h)i) = ∑

i∈Ih
pi −∑

i∈Ih
(1 − pi) − ∑

i∈Jh
pi + ∑

i∈Jh
(1 − pi ) − ∑

i∈Ih
(2 pi −

1) + ∑
i∈Jh

(1 − 2 pi ) = μ(h, p). �
For fixed p = (p1, . . . , pm), the quantity μ(h, p) varies

as a function of h. The next proposition bounds its range of
variation.

Proposition 5.2: Let X := {x1, . . . , xm} ⊂ R
d and p :=

(p1, . . . , pm) be such that pi ∈ [0, 1], i = 1, . . . , m. Let
h p, h̄ p ∈ B(X) be defined as h p(xi ) := 1 if pi ≥ 1/2,
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h p(xi ) := −1 if pi < 1/2, and h̄ p(xi) := −1 if pi ≥ 1/2,
h̄ p(xi ) := 1 if pi < 1/2. Then,

1)μ(h p, p) = max{μ(h, p)|h ∈ B(X)}
2)μ(h̄ p, p) = min{μ(h, p)|h ∈ B(X)}.

Proof: 1) Let us define p(h)i := pi if h(xi ) = 1 and
p(h)i := 1 − pi if h(xi ) = −1. As for every i = 1, . . . , m,
we have p(h p)i = max{pi , 1 − pi } ≥ p(h)i , the statement
follows. 2) is proven analogously. �

By Theorem 3.3, variation with respect to a dictionary of a
function is large when the function is nearly orthogonal to all
elements of the dictionary. For G := {g1, . . . , gk}, we denote

μG(p) := max
gi ,...,gk

|μ(gi , p)| .
The next theorem estimates probability distributions of varia-
tional norms in dependence on the size of a dictionary.

Theorem 5.3: Let X = {x1, . . . , xm} ⊂ R
d , G =

{g1, . . . , gk} ⊂ B(X), and p = (p1, . . . , pm) such that
pi ∈ [0, 1], i = 1, . . . , m. Then, for every f ∈ B(X) randomly
chosen according to ρp and every λ > 0

Pr

(
� f �G ≥ m

μG(p) + mλ

)
> 1 − ke− mλ2

2 .

Proof: By Theorem 4.2 (i), we get

Pr(|� f, h� − μ(h, p)| > mλ∀h ∈ G) ≤ ke− mλ2
2 .

Hence,

Pr(|� f, h� − μ(h, p)| ≤ mλ∀h ∈ G) > 1 − ke− mλ2
2 .

As |� f, h� − μ(h, p)| ≤ mλ implies |� f, h�| ≤ μ(h, p) + mλ,
we get

Pr(|� f, h�| ≤ μ(h, p) + mλ∀h ∈ G) > 1 − ke− mλ2
2 .

Therefore, by Theorem 3.3

Pr

(
� f �G ≥ m

μ(h, p) + mλ
∀h ∈ G

)
> 1 − ke− mλ2

2 .

Since by definition for every h ∈ G, one has μG(p) ≥
μ(h, p), we obtain

m

μG(p) + mλ
≤ m

μ(h, p) + mλ

and so

Pr

(
� f �G ≥ m

μG(p) + mλ

)
> 1 − ke− mλ2

2 .

�
Theorem 5.3 shows that the more biased the sets of func-

tions to be computed, the more chances to find relatively
small dictionaries capable to compute or approximate them
by reasonably sparse networks.

On the other hand, when for all computational units h in
a dictionary G, the mean value μ(h, p) is small, then for
large m, almost all functions randomly chosen according to
ρp are nearly orthogonal to all elements of the dictionary G.
For example, setting λ = m−1/4, we get probability greater
than 1 − ke−(m1/2/2) that a randomly chosen function has

G-variation greater or equal to (m/(μG(p) + m3/4)). Thus,
when for large m, (μG(p)/m) is small, G-variation of most
functions is large unless the size of the dictionary k outweights
the factor e−(mλ2/2).

Functions with large G-variations cannot be computed by
networks with a linear output unit which has both the number
of elements of G and all absolute values of output weights
small.

Corollary 5.4: Let X = {x1, . . . , xm} ⊂ R
d , G =

{g1, . . . , gk} ⊂ B(X), and p = (p1, . . . , pm) such that
pi ∈ [0, 1], i = 1, . . . , m. Then, for every f ∈ B(X) randomly
chosen according to ρp , and every λ > 0

Pr

(
min

{
�w�1| f =

k∑
i=1

wi gi

}
≥ m

μG(p)+mλ

)
>1−ke− mλ2

2 .

Corollary 5.4 implies that a computation of most functions
either requires to perform an ill-conditioned task by a moderate
network or a well-conditioned task by a large network.

As h p has among all elements of B(X) the largest mean
value of its inner products with randomly chosen functions
from B(X) with respect to ρp , for any dictionary G, we have
μG ≤ μ(h p, p). Thus, if μ(h p) is small, then unless a
dictionary is large enough to outweigh e−(m1/2/2), almost all
functions have large variations.

In particular, for the uniform distribution pi = 1/2 for all
i = 1, . . . , m, for every h ∈ B(X), the mean value μ(h, p) is
zero. Thus, for any dictionary G ⊂ B(X), almost all functions
for every f ∈ B(X) uniformly randomly chosen from B(X)
are nearly orthogonal to all elements of the dictionary. Thus,
we get the following two corollaries.

Corollary 5.5: Let X = {x1, . . . , xm} ⊂ R
d and f ∈ B(X)

be uniformly randomly chosen. Then, for every h ∈ B(X) and
every λ > 0

Pr(|� f, h�| > mλ) ≤ e− mλ2
2 .

Corollary 5.6: Let X = {x1, . . . , xm} ⊂ R
d and G =

{g1, . . . , gk} ⊂ B(X). Then, for every f ∈ B(X) uniformly
randomly chosen and every λ > 0

Pr

(
� f �G ≥ 1

λ

)
> 1 − ke− mλ2

2 .

When we do not have any a priori knowledge about the
task, we have to assume that the probability on B(X) is
uniform. Corollary 5.6 shows that unless a dictionary G
is sufficiently large to outweigh the factor e−(mλ2/2), most
functions randomly chosen in B(X) according to ρp have
G-variations greater or equal to 1/λ. For small λ and suf-
ficiently large m, most such functions cannot be computed by
linear combinations of small numbers of elements of G with
small coefficients. Similar situation occurs when probabilities
are nearly uniform.

Many common dictionaries used in neurocomputing are
relatively small with respect to the factor e−(m1/2/2). For
example, the size of the dictionary of signum perceptrons
Pd (X) on a set X of m points in R

d is well known since
the work of Schläfli [48]. Schläfli estimated the number of
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linearly separated dichotomies of m points in R
d . His upper

bound states that for every X ⊂ R
d such that cardX = m

cardPd(X) ≤ 2
d∑

l=1

(
m − 1

l

)
≤ 2

md

d! . (3)

(see [49]). The set Pd (X) forms only a small fraction of
the set of all functions in the set B(X), whose cardinality
is equal 2m . Also, other dictionaries of {−1, 1}-valued func-
tions generated by dichotomies of m points in R

d defined
by nonlinear separating surfaces (such as hyperspheres or
hypercones) are relatively small (see [49, Table I ]). Even a
large size of a dictionary does not guarantee that all functions
have reasonably small variations. Although probabilities that
a function has a large inner product with any element of G
are small, they may not be independent.

VI. CONCLUSION

We investigated how to choose dictionaries of network
computational units so that binary classification tasks can
be efficiently solved. As, with increasing sizes of domains,
the number of all classifications tasks becomes unmanageable
large, we focused our investigation on tasks characterized by
probability distributions, modeling their relevance for a given
application area.

To identify efficient network designs, we explored the
complexity of networks computing randomly chosen classi-
fication tasks. As minimization of the sparsity of a shallow
network measured by the number of hidden units (formalized
in terms of the “l0-pseudonorm” of output-weight vectors)
is a difficult nonconvex optimization task, we considered
l1-norm as an approximate measure of sparsity. We studied
minimization of the l1-norm of output-weight vectors in terms
of variational norms tailored to dictionaries of computational
units. We combined geometric properties of variational norms
with a concentration of measure phenomena occurring in
high-dimensional Euclidean spaces [50]. We explored the
effects of increasing sizes of domains of the classification tasks
on correlations between these tasks and computational units.
Using a version of the Chernoff–Hoeffding Bound on sums of
independent but not necessarily uniformly distributed random
variables, we proved probabilistic bounds on variational norms
of binary-valued functions and l1-norms of output-weight
vectors. We described the distributions of these norms in terms
of the size of the domain, the size of the dictionary, and the
probability distribution characterizing the type of tasks.

We proved that on large domains there exist functions
highly correlated with almost all functions randomly chosen
with respect to the probability modeling the prior knowledge.
Thus, it is desirable to choose a dictionary containing or
well approximating such functions. Otherwise, almost any
randomly chosen task requires either a network with a large
number of units or computation of the task is unstable as some
of the output weights are large.

VII. DISCUSSION

We presented a probabilistic approach to the selection of a
suitable dictionary of computational units, assuming that the

set of tasks to be computed is endowed with a probability
distribution. Another probabilistic approach to the selection of
computational units assumes that a function to be computed
is fixed, while computational units are chosen randomly.
Approximation with random bases has been investigated since
1995 [51]. In some literature, algorithms based on random
selection of inner parameters of computational units are called
“Extreme Learning Machines” [52]. In [53], a theoretical
analysis of random and greedy approximation was given.
It was shown therein that “both randomized and deterministic
procedures are successful if additional information about the
families of function to be approximated is provided. In the
absence of such information, one may observe exponential
growth of the number of terms needed to approximate the
function and/or extreme sensitivity of the outcome of the
approximation to parameters.”

In the above-mentioned articles on approximation with
random bases and extreme learning, there is an implicit
assumption that the probability distribution, with respect to
which computational units are chosen, is uniform. In this
paper, instead, we considered any product distribution, not
necessarily uniform. In many real applications, various biases
characteristic for tasks of interest can be observed and training
data can be imbalanced.

Our work was motivated by questions concerning neuro-
computing. However, sparsity also plays an important role
in signal processing, where representations of input data as
linear combinations of a small number of components (called
“atoms”) are searched for. Sparse dictionary learning has
applications, e.g., in image denoising and classification and
video and audio processing (see [54], [55]). Our results can
also be applied to the processing of signals on large domains.

We focused on binary classification tasks. An extension of
our results to multiclass tasks and computation of general
real-valued functions on finite domains is a subject for future
work. To reach this goal, it will be necessary to exploit more
general versions of the concentration of measure, such as the
methods of averaged bounded differences [46]. We believe
that such more general methods may allow one to extend the
analysis also to tasks characterized by more general probability
distributions.

Choice of dictionaries for efficient computation has been
investigated here theoretically. For practical approaches to the
efficient construction of sparse networks using regularization,
we refer the reader to [56]–[58] and references therein.
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[37] V. Kůrková, P. C. Kainen, and V. Kreinovich, “Estimates of the number
of hidden units and variation with respect to half-spaces,” Neural Netw.,
vol. 10, no. 6, pp. 1061–1068, Aug. 1997.

[38] G. Gnecco, “A comparison between fixed-basis and variable-basis
schemes for function approximation and functional optimization,”
J. Appl. Math., vol. 2012, 2012, Art. no. 806945.

[39] G. Gnecco, “On the curse of dimensionality in the Ritz method,”
J. Optim. Theory Appl., vol. 168, no. 2, pp. 488–509, 2016.
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