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Abstract

In Lp-spaces with p [ �1;1� there exists a best approximation mapping to the set of functions computable by Heaviside perceptron

networks with n hidden units; however for p [ �1;1� such best approximation is not unique and cannot be continuous. q 2000 Elsevier

Science Ltd. All rights reserved.
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1. Introduction

An important measure of the complexity of feedforward

neural networks is the number of hidden units. To estimate

the accuracy of approximation achievable using networks

with a ®xed number of units, it is helpful to study properties

like existence, uniqueness and continuity of approximation

operators to sets of functions computable by such networks.

Here we investigate such properties for one-hidden-layer

Heaviside perceptron networks. We derive implications for

these networks from our recent mathematical results

(Kainen, KuÊrkovaÂ, & Vogt, 1999b; Kainen, KuÊrkovaÂ, &

Vogt, 2000): in Lp-spaces with p [ �1;1� for all positive

integers n, d there exists a best approximation mapping to

the set of functions computable by Heaviside perceptron

networks with n hidden and d input units; however, for p [
�1;1� geometric properties (non-convexity) of sets of func-

tions computable by such networks prevent these best

approximations from being continuous.

2. Heaviside perceptron networks

Feedforward networks compute parametrized sets of

functions dependent on both the type of computational

units and their interconnections. Computational units

compute functions of two vector variables: an input vector

and a parameter vector. Standard types of units are percep-

trons.

A perceptron with an activation function c : R! R
(where R denotes the set of real numbers) computes real-

valued functions on R d11 £ Rd of the form c�v´x 1 b�;
where x [ R dis an input vector, v [ Rd is an input weight

vector and b [ R is a bias.

The most common activation functions are sigmoidals,

i.e., functions with ess-shaped graph. Both continuous and

discontinuous sigmoidals are used. Here we study networks

based on the discontinuous Heaviside function q de®ned by

q�t� � 0 for t , 0 and q�t� � 1 for t $ 0.

Let Hd denote the set of functions on [0,1]d computable by

Heaviside perceptrons, i.e., the set Hd �
{f : �0; 1�d ! Ru f �x� � q�v´x 1 b�; v [ Rd

; b [ R}:

Notice that Hd is the set of characteristic functions of half-

spaces of Rd restricted to [0,1]d.

The simplest type of multilayer feedforward network has

one hidden layer and one linear output. Such networks with

Heaviside perceptrons in the hidden layer compute func-

tions of the form

Xn

i�1

wiq�vi´x 1 b2�;

where n is the number of hidden units, wi [ R are output

weights and vi [ Rd and bi [ R are input weights and

biases, resp.

The set of all such functions is the set of all linear combi-

nations of n elements of Hd and is denoted by spannHd.

It is known that for all positive integers d,

<n[N1
spannHd (where N1 denotes the set of all positive

integers) is dense in �C��0; 1�d�; i´ic�; the linear space of all

continuous functions on [0,1]d with the supremum norm,

as well as in �Lp��0; 1�d�; i´ip� with p [ �1;1� (see, for
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example, Cybenko, 1989; Hornik, Stinchcombe, & White,

1989). However, for practical applications, the desired accu-

racy of approximation has to be achievable for n small

enough to allow implementation. Thus it is useful to study

approximation capabilities of the sets spannHd.

3. Existence of a best approximation

Existence of a best approximation has been formalized in

approximation theory by the concept of proximinal set

(sometimes also called ªexistenceº set). A subset M of a

normed linear space (X, i´i) is called proximinal if for

every f [ X the distance i f 2 Mi � infg[Mi f 2 gi is

achieved for some element of M, i.e., i f 2 Mi �
ming[Mi f 2 gi (see, for example, Singer, 1970). Clearly,

a proximinal subset must be closed.

A suf®cient condition for proximinality of a subset M of a

normed linear space (X,i´i) is compactness (i.e., each

sequence of elements of M has a subsequence convergent

to an element of M). Indeed, for each f [ X; the functional

e{f } : M ! R de®ned by e{f }�m� � im 2 f i is continuous

(see, for example, Singer, 1970, p. 391) and hence must

achieve its minimum on any compact set M.

Gurvits and Koiran (1997) have shown that for all posi-

tive integers d, the set of characteristic functions of half-

spaces Hd is compact in �Lp��0; 1�d�; i´ip� with p [ �1;1�:
This can be easily veri®ed once the set Hd is reparametrized

by elements of the unit sphere Sd in Rd11. Indeed, a function

q�v´x 1 b�; with the vector �v1;¼; vd; b� [ Rd11 nonzero,

is equal to q�v̂´x1b̂�; where �v̂1;¼; v̂d; b̂� [ Sd is obtained

from �v1;¼; vd; b� [ Rd11 by normalization. Strictly speak-

ing, Hd is parametrized by equivalence classes in Sd since

different parametrization may represent the same member of

Hd when restricted to [0,1]d. Since Sd is compact, and the

quotient space formed by the equivalence classes is like-

wise, so is Hd.

However, by extending Hd into spannHd for any positive

integer n, we lose compactness since the norms are not

bounded.

Nevertheless compactness can be replaced by a weaker

property that requires only some sequences to have conver-

gent subsequences. A subset M of a normed linear space (X,

i´i) is called approximatively compact if for each f [ X and

any sequence {gi : i [ N1} # M such that limi!1i f 2
gii � i f 2 Mi; there exists g [ M such that {gi : i [
N1} converges subsequentially to g (see, for example,

Singer, 1970, p. 368).

The following theorem shows that spannHd is approxima-

tively compact in Lp-spaces. It extends a weaker result by

KuÊrkovaÂ (1995), who showed that spannHd is closed in Lp-

spaces with p [ �1;1�:

Thoerem 3.1. For every n, d positive integers and for

every p [ �1;1�: spannHd is an approximatively compact

subset of �Lp��0; 1�d�; i´ip�.

The proof is based on an argument showing that any

sequence of elements of spannHd has a subsequence that

converges either to an element of M or to a Dirac delta

function, and the latter case cannot occur when such a

sequence approximates a best approximation of some func-

tion in Lp��0; 1�d� (see Kainen et al., 1999b).

It is a straightforward consequence of the de®nitions that

approximatively compact implies proximinal (see Singer,

1970, p. 382).

Corollary 3.2. For every n, d positive integers and for

every p [ �1;1� spannHd is a proximinal subset of

�Lp��0; 1�d�; i´ip�.

Thus, for any ®xed number n of hidden units, a function

in Lp��0; 1�d� has a best approximation among functions

computable by one-hidden-layer networks with a single

linear output unit and n Heaviside perceptrons in the hidden

layer. In other words, in the space of parameters of networks

of this type, there exists a global minimum of the error

functional de®ned as Lp-distance from the function to be

approximated.

4. Uniqueness and continuity of best approximation

Let M be a subset of a normed linear space (X, i´i) and let

P(M) denote the set of all subsets of M. The set-valued

mapping PM : X ! P�M� de®ned by PM� f � � {g [ M :

i f 2 gi � i f 2 Mi} is called the metric projection of X

onto M and PM( f ) is called the projection of f onto M.

Let F : X ! P�M� be a set-valued mapping. A selection

from F is a mapping f : X ! M such that for all f [ X;

f� f � [ F� f �. A mapping f : X ! M is called a best

approximation operator from X to M if it is a selection

from PM.

When M is proximinal, then PM( f ) is non-empty for all

f [ X and so there exists a best approximation mapping

from X to M. The best approximation need not be unique.

When it is unique, M is called a Chebyshev set (or ªunicityº

set). Thus M is Chebyshev if for all f [ X the projection

PM( f ) is a singleton.

Let us recall that a normed linear space (X,i´i) is called

strictly convex (also called ªrotundº) if for all f ± g in X

with i f i � igi � 1; we have i� f 1 g�=2i , 1: This just

means that the midpoint of the segment joining any two

points on the unit sphere is contained in the interior of the

ball. Thus, a norm is strictly convex when the unit ball is

ªroundº. It is well known that for all p [ �1;1�
�Lp��0; 1�d�; i´ip� is strictly convex.

In the previous section we have noted that for all positive

integers n, d and p [ �1;1� there exists a best approxima-

tion mapping from Lp��0; 1�d� to spannHd. The following

theorem implies for p in the open interval (1,1) that if

among such best approximations there is a continuous

one, then best approximation is unique.
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Theorem 4.1. In a strictly convex normed linear space,

any subset with a continuous selection from its metric

projection is Chebyshev.

For the proof and extensions to non-strictly convex

spaces, see Kainen, KuÊrkovaÂ and Vogt (1999a) and Kainen

et al. (2000).

To apply Theorem 4.1 to spannHd, we shall use the

following geometric characterization of Chebyshev sets

with continuous best approximation by Vlasov (1970).

Theorem 4.2. In a Banach space with strictly convex

dual, every Chebyshev subset with continuous metric

projection is convex.

It is well known that Lp-spaces with p [ �1;1� satisfy

the assumptions of this theorem (since the dual of Lp is Lq

where �1=p�1 �1=q� � 1 and q [ �1;1�� (see, for example,

Friedman, 1982, p. 160). Hence, to show the non-existence

of a continuous selection, it is suf®cient to verify that

spannHd is not convex.

Proposition 4.3. For all n, d positive integers, spannHd is

not convex.

To verify nonconvexity of spannHd consider 2n parallel

half-spaces with the characteristic functions gi�x� �
q�v´x 1 bi�; where 0 . b1 . ¼ . b2n . 21 and

v � �1; 0;¼; 0� [ Rd. Then 1
2

P2n
i�1 gi is a convex combina-

tion of two elements of spannHd,
Pn

i�1 gi and
P2n

i�n 1 1 gi; but it

is not in spannHd since its restriction to the one-dimensional set

{�t; 0;¼; 0� [ Rd : t [ �0; 1�} has 2n discontinuities.

Summarizing results of this section and of the previous

one, we get the following corollary.

Corollary 4.4. In �Lp��0; 1�d�; i´ip� with p [ �1;1� for all

n, d positive integers there exists a best approximation

mapping from Lp��0; 1�d� to spannHd, but no such mapping

is continuous.

5. Discussion

We have shown that convenient properties of projection

operators such as uniqueness and continuity are not satis®ed

by Heaviside perceptron networks with a ®xed number of

hidden units. These properties allow one to estimate worst-

case errors using methods of algebraic topology (see for

example, DeVore, Howard, and Micchelli, 1989). In linear

approximation theory, application of such methods shows

that some sets of functions de®ned by smoothness condi-

tions exhibit the curse of dimensionality: the approximants

converge at rate O�1= ��
nd
p �; where d is the number of variables

and n the dimension of the approximating linear space (see,

for example, Pinkus, 1986). Our results show that these

arguments are not applicable to approximation by Heaviside

perceptron networks.

Note that the results from Section 3 cannot be extended to

perceptron networks with differentiable activation func-

tions, for example, the logistic sigmoid or hyperbolic

tangent. For such functions, sets spannPd(c ) (where

Pd�c� � {f : �0; 1� d ! Ru f �x� � c�v´x 1 b�; v [ R d
;

b [ R}) are not closed and hence cannot be proximinal.

This was ®rst observed by Girosi and Poggio (1990) and

later exploited by Leschno, Lin, Pinkus, and Schocken

(1993) for a proof of the universal approximation property.
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