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A sufficiently smooth function of d variables that decays fast enough at infinity can be represented pointwise
by an integral combination of Heaviside plane waves (i.e., characteristic functions of closed half-spaces). The
weight function in such a representation depends on the derivatives of the represented function. The represen-
tation is proved here by elementary techniques with separate arguments for even and odd d, and unifies and
extends various results in the literature.
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1 Introduction

An integral formula of the form∫
A

w(a)φ(a,x) da

can be metaphorically viewed as a one-hidden-layer neural network with a single linear output unit and a contin-
uum of hidden units. Each hidden unit computes a value of the function φ depending on an input vector x and
a parameter vector a. The output function of the network is a weighted integral combination of the hidden unit
functions.

Such integral formulas have been used to show that output functions from one-hidden-layer neural networks
with suitable φ and finitely many units are dense in various function spaces (see, e.g., Funahashi [8], Carroll
and Dickinson [4], and Ito [13]). Integral representations have also been used to estimate how accuracy of
approximation varies with the number of hidden units (see, e.g., Barron [1], Girosi and Anzellotti [10], and
Kůrková, Kainen and Kreinovich [19]). In a neural network with finitely many units the integral is replaced by
a Riemann sum. A neural network can even be thought of as a kind of numerical quadrature, a generalization of
the midpoint, trapezoid, and Simpson rules for approximating integrals.

In this paper we derive integral formulas corresponding to one-hidden-layer Heaviside networks, extending
and unifying results in [8], [4], [13], and [19]. Some of the ideas in this paper appeared in [16]. See also
Helgason’s monograph [11] on the Radon transform.

An outline of the paper follows. Section 2 reviews neural networks and establishes notation, Section 3 dis-
cusses Green’s functions and Green’s second identity, while Section 4 describes functions of controlled decay and
states our main theorem. We consider the 1-dimensional case in Section 5, provide necessary lemmas in Section
6, and prove the main theorem in Section 7. Section 8 has extensions and refinements of our representation and
its relation to known results. The paper ends with a brief discussion.
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2 Feedforward neural networks

Feedforward neural networks compute functions determined by the type of units and their interconnections. Each
computational unit depends on two vector variables (an input and a parameter), and is given by a function
φ : Rp × Rd −→ R, where p and d are the dimensions of the parameter and input space respectively and R
denotes the set of real numbers.

One-hidden-layer networks, with hidden units based on a fixed function φ and a single linear output unit, yield
functions f : Rd −→ R of the form

f(x) =
n∑

i=1

wiφ(ai,x), (2.1)

where n is the number of hidden units, and wi ∈ R are the output weights and ai ∈ Rp the input parameters of
the i-th unit for i = 1, . . . , n.

A perceptron is a computational unit based on a function of the form φ((v, b),x) = ψ(v · x + b), where
ψ : R −→ R is called the activation function, v ∈ Rd is an input weight vector, and b ∈ R is a bias. Parameter
vectors are pairs (v, b) ∈ Rd+1, so p = d+ 1. The activation function often takes values between 0 and 1.

A typical activation function, and the focus of this paper, is the Heaviside function ϑ defined by ϑ(t) = 0 for
t < 0, ϑ(t) = 1 for t ≥ 0. Let ‖ · ‖ denote the Euclidean norm on Rd, and Sd−1 the unit sphere in Rd. For every
a > 0, ϑ(at) = ϑ(t). So, for v �= 0, ϑ(v · x + b) = ϑ(e · x + b′), where e = v

‖v‖ ∈ Sd−1 and b′ = b
‖v‖ .

For e ∈ Sd−1 and b ∈ R we denote by He,b the hyperplane

He,b = {x ∈ Rd : e · x + b = 0}.

The closed half-spaces bounded by this hyperplane are denoted by:

H+
e,b = {x ∈ Rd : e · x + b ≥ 0}

and

H−
e,b = {x ∈ Rd : e · x + b ≤ 0}.

A function from Rd into R is called a plane wave if it can be represented in the form α(v · x), where
α : R −→ R is any function of one variable and v ∈ Rd is any fixed nonzero vector. Plane waves are constant
on hyperplanes He,b with e = v/‖v‖. A perceptron with activation function ψ thus gives plane waves of the
form ψb(v · x), where ψb(t) = ψ(t+ b).

Our goal is to represent real-valued functions f on Rd by an integral combination of Heaviside perceptron
units. Thus we seek a representation

f(x) =
∫

Sd−1×R
w(e, b)θ(e · x + b) de db (2.2)

where de is the surface area element on the unit sphere Sd−1, w : Sd−1 × R −→ R is a weight function, and
x �−→ θ(e ·x + b) is the characteristic function of the closed half-spaceH+

e,b. Equation 2.2 is an integral version
of 2.1.

3 Green’s functions and Green’s second identity

The theory of distributions extends calculus from ordinary differentiable functions to a larger set of generalized
functions (or distributions) where the formal rules of calculus still hold. For example, the operation of convolution
g ∗ h of two functions g and h, defined formally by (g ∗ h)(x) =

∫
Rd g(y)h(x − y) dy, see [20, p. 123], can be

extended to distributions provided their supports are suitable. It is a commutative operation and the Dirac delta
function δ serves as an identity with f ∗ δ = f .
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Let L be a linear differential operator acting on distributions in Rd. In general the equation

L(f) = g

with g given and f unknown can be solved for f by means of a Green’s function G with the property that
L(G) = δ. Indeed, f = g ∗G is a solution since L(g ∗G) = g ∗ L(G) = g ∗ δ = g.

An example of a linear differential operator is the Laplacian 
:


g =
d∑

i=1

∂2g

∂x2
i

.

For a positive integer m, 
m denotes the Laplacian iterated m times, while 
0 is the identity operator.
The Green’s function for the Laplacian in Rd is 1

2π log ‖x‖ when d = 2, and 1
(2−d)ωd

‖x‖2−d when d �= 2,

where ωd = 2
√

πd

Γ( d
2 )

is the surface area of the unit sphere Sd−1 in Rd (cf. [5, p. 679]). These Green’s functions

are regular distributions, i.e., they coincide with ordinary functions. Indeed, not only are they locally integrable
in Rd despite a singularity at the origin, they are also C∞ except at the origin, and they either die out at infinity
(d ≥ 3) or have logarithmic or linear growth there (d = 2 or 1). Green’s functions for iterated Laplacians,
exhibited in Equations (7.3) and (7.4) below, have similar properties but with distinct forms depending on the
parity of d, as in the integral formula below.

Our treatment is self-contained and calculus-based. We use distribution theory [20] only for motivation.
Let x in Rd be fixed, and let positive numbers δ and R be given with R � δ. Let

D = {y : y ∈ Rd, ‖x − y‖ ≥ δ, ‖y‖ ≤ R}
so that the boundary of D consists of two spheres: ∂D = {y ∈ Rd, ‖x − y‖ = δ, or ‖y‖ = R}. Then Green’s
second identity for two C2 functions u and v (cf. [5, p. 257]) defined in a neighborhood of D takes the form:∫

D

(u
 v − v
 u) dy =
∫

∂D

(
u
∂v

∂n
− v

∂u

∂n

)
dSy (3.1)

where ∂
∂n = ±Σd

i=1
yi

‖y‖
∂

∂yi
denotes the radial normal derivative out of the region of interest and dSy denotes

the surface area element on the two bounding spheres. We call the righthand side of this equation a boundary
integral.

4 The Representation Theorem

Let r be a real number. A real-valued function g onRd vanishes to order r (at infinity) iff lim‖x‖−→∞ g(x)‖x‖r =
0. In this case we write g(x) = o(‖x‖−r) according to the Landau convention. Let ord g denote the order of
vanishing of g at ∞ [2, p. 8], that is,

ord g = sup {r : g(x) = o(‖x‖−r)}.

For example, ord (log (‖x‖+1))s

‖x‖r+1 = r if r and s are real numbers with s ≥ 0. The statement ord g > r is equivalent
to each of the following:

∃ε > 0 such that ∀ε0 > 0 ∃R > 0 such that ‖x‖ ≥ R =⇒ |g(x)| ≤ ε0
‖x‖r+ε

,

∃ε > 0 ∃C > 0 such that ∀x |g(x)| ≤ C

(‖x‖2 + 1)(r+ε)/2
, and

∃ε > 0 ∃R > 0 such that ‖x‖ ≥ R =⇒ |g(x)| ≤ 1
‖x‖r+ε

.

Lemma 4.1 Let g : Rd −→ R be C1, with lim‖x‖−→∞ g(x) = 0, x = (x1, . . . , xd), and ord ∂g
∂xi

≥ r > 1
for all i = 1, . . . , d. Then ord g ≥ r − 1.
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P r o o f. Given ε0 > 0, then for all ‖x‖ sufficiently large and for all i = 1, . . . , d∣∣∣∣ ∂g∂xi
(x)
∣∣∣∣ ≤ ε0

‖x‖r
,

and

|g(x)| =
∣∣∣∣g(x) − lim

‖x‖−→∞
g(x)

∣∣∣∣
=

∣∣∣∣∣
∫ ∞

t=1

d∑
i=1

∂g

∂xi
(tx)xi dt

∣∣∣∣∣
≤
∫ ∞

t=1

√
d · ε0‖x‖
‖tx‖r

dt

=

√
d · ε0

‖x‖r−1

∫ ∞

1

dt

tr

=

√
d · ε0

(r − 1)‖x‖r−1
,

i.e., g vanishes to order r − 1.

Our chief result is that a sufficiently smooth real-valued function on Rd that dies off at infinity sufficiently
rapidly can be written in the form (2.2). The class of functions for which the theorem is proved depends on the
parity of d, as does the choice of w.

Let kd = d + 1 if d is odd, d + 2 if d is even
(
i.e., kd = 2�d+1

2 �). Call a function f of controlled decay if
f : Rd −→ R is kd-times continuously differentiable and for each multi-index α = (α1, . . . , αd) with |α| ≤ kd

ord ∂αf > |α|
where ∂αf denotes the corresponding partial derivative of f . In other words, for each such α there is an ε > 0
such that

lim
‖x‖−→∞

∂αf(x)‖x‖|α|+ε = 0.

The number ε depends on f and α. In arguments below where multiple partial derivatives are considered, we
shall take ε to be the smallest of the individual ε’s and shall also assume without loss of generality that ε < 1.
The set of functions of controlled decay includes all real-valued functions on Rd of rapid descent, i.e., all C∞

functions f satisfying ord ∂αf = ∞ for every multi-index α (cf. [20, p. 100]). In particular, any function in Ckd

with compact support is sufficiently vanishing.
For f of controlled decay, we define a function wf on Sd−1 ×R by

wf (e, b) = ad

∫
H−

e,b


 d+1
2 f(y) dy (d odd),

wf (e, b) = ad

∫
Rd


 d+2
2 f(y)α(e · y + b) dy (d even),

where

ad =

⎧⎪⎪⎨
⎪⎪⎩

(−1)(d−1)/2

2(2π)d−1
if d is odd,

(−1)(d−2)/2

(2π)d
if d is even;

and α(t) = −t log |t| + t for t �= 0 and α(0) = 0. The function α is odd.
Our Representation Theorem expresses a function as an integral combination of plane waves based on the

Heaviside function θ.
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Theorem 4.2 (Representation Theorem) Let f be of controlled decay. Then for each x ∈ Rd

f(x) =
∫

Sd−1×R
wf (e, b)ϑ(e · x + b) de db, (4.1)

where in the even case the integral is defined pointwise as limK−→∞
∫

Sd−1×(−∞,K].

Well-definedness of wf and integrability are established in the proof below.

5 The one-dimensional case

The one-dimensional case is instructive both for its simplicity and because it indicates that further generalization
is possible. When d = 1, any C1 function that vanishes at ±∞ can be represented in the form (2.2).

Proposition 5.1 Let f : R −→ R be continuously differentiable with limt−→±∞ f(t) = 0. Then for every
x ∈ R,

f(x) =
1
2

∫ ∞

−∞
f ′(−b)ϑ(x+ b) db+

−1
2

∫ ∞

−∞
f ′(b)ϑ(−x+ b) db.

In this case Sd−1 = S0 = {±1}, the weight function is given by wf (1, b) = 1
2f

′(−b) = −wf (−1,−b).
P r o o f. Evaluation of the Heaviside function and a simple change of variables yields:

1
2

∫ x

−∞
f ′(b) db − 1

2

∫ ∞

x

f ′(b) db =
1
2
(f(x) − f(−∞)) − 1

2
(f(∞) − f(x)) = f(x).

When d = 1, the Representation Theorem requires that f be C2 with sufficient decay at ±∞, but Proposition
5.1 is more general. The Representation Theorem asserts that when d = 1, wf (e, b) = a1

∫
y:ey+b≤0

f ′′(y) dy =
1
2ef

′(−eb), as shown.
Proposition 5.1 has alternative forms. The coefficients 1

2 and − 1
2 can be replaced by t and t − 1 for arbitrary

t. If f vanishes only at −∞, take t = 1 (the first integral alone). Similarly if f vanishes only at ∞, take t = 0.
So the weight function in (2.2) is not unique.

Furthermore, f can be assumed to be merely absolutely continuous on each finite interval, guaranteeing a first
derivative f ′ almost everywhere. Assume for example that: i) f is absolutely continuous on finite intervals, ii)
limx−→−∞ f(x) = 0, and iii) f has finite total variation on intervals of the form (−∞, x] for real numbers x.
Then f ′ is in L1((−∞, x]) for each x and the first integral in Proposition 5.1 represents f at any real number
x (cf. Hewitt and Stromberg [12, p. 286]). Lemma 6.1 below shows that the conditions at ±∞ can be further
relaxed.

6 Preliminary lemmas

We need three lemmas for the proof. The first is a variant of Proposition 5.1.

Lemma 6.1 Let g : R −→ R be a continuous function such that g(0) = 0 and g is continuously differentiable
on (−∞, 0) ∪ (0,∞). Then for every x ∈ R,

g(x) =
∫ ∞

0

g′(t)ϑ(x − t) dt−
∫ 0

−∞
g′(t)ϑ(t− x) dt.

P r o o f. The right side in the Lemma is the same as:

∫ max {x,0}

0

g′(t) dt−
∫ 0

min {0,x}
g′(t) dt,

and this equals g(x) − g(0) = g(x).
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The function g′ is continuous on the half-open interval joining 0 to x �= 0, but may not be integrable
on this interval, in which case the integrals in Lemma 6.1 are not Lebesgue or Riemann integrals but rather

limε−→0+

(∫∞
ε

+
∫ −ε

−∞
)

. In the two applications we make of Lemma 6.1, g′ is integrable on the given intervals

and Lebesgue integration applies.
Lemmas 6.2 and 6.3 below show that the functions ‖x‖ and log ‖x‖ on Rd can be represented as integrals

of plane waves. These lemmas are stated in [5, pp. 678–679] except for the second part of Lemma 6.3. Lemma
6.2 is needed for d odd, and Lemma 6.3 for d even. We give simple proofs that exploit the homogeneity and
rotational invariance of the associated integral formulas. However, extra work is required to establish the final
conclusion of Lemma 6.3.

Lemma 6.2 For every positive integer d and for all x in Rd,

‖x‖ = sd

∫
Sd−1

|e · x| de,

where sd = d−1
2ωd−1

for d ≥ 2 and s1 = 1
2 .

P r o o f. The integral
∫
e∈Sd−1 |e · x| de is positive-homogeneous in x and rotationally invariant. Thus it is

equal to a constant time ‖x‖. To evaluate the constant, we take x to be a unit vector. Then the integral, for d ≥ 2,
is:

ωd−1

∫ π

θ=0

| cos θ| sind−2 θ dθ = ωd−1

[∫ π
2

0

cos θ sind−2 θ dθ −
∫ π

π
2

cos θ sind−2 θ dθ

]

= ωd−1

⎡
⎣ sind−1 θ

d− 1

∣∣∣∣∣
π
2

0

− sind−1 θ

d− 1

∣∣∣∣∣
π

π
2

⎤
⎦

=
2ωd−1

d− 1

while the integral reduces to 2 when d = 1.

Let β(t) = t2

2 log |t| − 3t2

4 for t �= 0 and β(0) = 0. Note that β′(t) = −α(t) for all t, and β′′(t) = log |t| for
t �= 0.

Lemma 6.3 For every positive integer d and for all nonzero x in Rd,

log ‖x‖ = bd +
1
ωd

∫
Sd−1

log |e · x| de = bd +
1
ωd



(∫

Sd−1
β(e · x) de

)
,

where bd is a constant.

P r o o f. To show that e �−→ log |x · e| is integrable, it suffices by additivity of the log to assume that x is a
unit vector. If d = 1, integrability is trivial. So assume d ≥ 2. Choosing the direction of x to be the north pole,
letting θ = cos−1 (e · x), and using the inequality cos θ ≥ 1 − 2

π θ for 0 ≤ θ ≤ π
2 , we find that:

∫
Sd−1

| log |e · x|| de = 2ωd−1

∫ π/2

0

| log cos θ| sind−2 θ dθ

≤ 2ωd−1

∫ π/2

0

| log cos θ| dθ

≤ 2ωd−1

∫ π/2

0

(−1) log
(

1 − 2
π
θ

)
dθ

= πωd−1.

Thus the integrals are well-defined despite the singularities at the equator θ = π
2 .
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By rotational invariance (x no longer assumed to be a unit vector)
∫

Sd−1 log |e · x| de is a function g(‖x‖),
with the property that g(‖λx‖) = ωd log |λ| + g(‖x‖). Hence g(‖x‖) = ωd log ‖x‖ + g(1), where g(1) =
ωd−1

∫ π

θ=0
log | cos θ| sind−2 θ dθ for d ≥ 2 and g(1) = 0 when d = 1. This establishes the first equality in

Lemma 6.3, with bd = −g(1)/ωd.
To establish the second equality, observe first that e �−→ β(x · e) is continuous and hence integrable on Sd−1.

Since 
f(e · x) = f ′′(e · x), we need only show that partial derivatives with respect to x can be moved from
outside to inside the integral. For first derivatives this is clear since β′ is continuous and its domain can be
restricted to [−‖x‖ − 1, ‖x‖ + 1].

The argument for second derivatives is more delicate. Since e · (x + huj) = e · x + hej , where uj is the unit
coordinate vector in the j-th direction and ej = e · uj , it suffices to show that

lim
h−→0

(∫
Sd−1

(
β′(e · x + hej) − β′(e · x)

h
− ejβ

′′(e · x)) de
)

= 0. (6.1)

The case d = 1 is trivial. Assume d ≥ 2 and h > 0. The integral in (6.1) can be decomposed into the sum of four
Lebesgue integrals, two of them over regions in the northern hemisphere:

Uh = {e : e · x > 0, e · x + hej < 0} and Vh = {e : e · x > 0, e · x + hej > 0},

and two more over similar regions in the southern hemisphere.

The set Uh is contained in the set {e : 0 < e · x < h} =
{
e : 0 < cos θ < h

‖x‖
}

, which has measure

approximately equal to hωd−1
‖x‖ for h small. It follows that the integral over Uh goes to 0 as h goes to 0 since β′ is

uniformly continuous on the interval [− ‖ x ‖ −1, ‖ x ‖ +1] so that |β′(e ·x+ hej)− β′(e ·x)| can be assumed
to be arbitrarily small and β′′ is integrable.

In the set Vh, on the other hand, let τ be the absolute value of the integrand in (6.1). Setting t = hej

e·x and using
the definitions of β′ and β′′, we find that

τ = |ej | sign(t)

(
log (1 + t)

t
+ log (1 + t) − 1

)
.

If t = 0, τ = 0. Since |ej| ≤‖ e ‖= 1, τ is dominated by log (1 + t) for t ≥ 0 and by log (1−t)
log 2 for −1 < t ≤ 0.

Thus τ is dominated by log (1+|t|)
log 2 for all t > −1. Hence, with H = h

‖x‖ , the integral over Vh is dominated by:

1
log 2

∫
{e: e·x>0}

log
(
1 + h| ej

e · x |
)
de ≤ ωd−1

log 2

∫ π/2

0

log
(

1 +
H

cos θ

)
sind−2 θ dθ

≤ ωd−1

log 2

∫ π/2

0

log
(

1 +
H

1 − 2
π θ

)
dθ

=
ωd−1

log 2
π

2
(−H logH + (1 +H) log (1 +H)) ,

which converges to 0 as h tends to 0+.
These arguments show that when h converges to 0+ the integral in (6.1) restricted to the northern hemisphere

(e such that e · x > 0) tends to 0. In the southern hemisphere the substitution e′ = −e and the oddness of
β′ and evenness of β′′ convert the corresponding integral into the negative of the northern hemisphere integral.
Likewise, when h tends to 0 though negative values, the substitutions x′ = −x and h′ = −h convert a left limit
at x into a right limit at x′. Hence (6.1) holds.

7 Proof of the Representation Theorem

P r o o f. To prove the Representation Theorem, we express a function as the convolution of its iterated Lapla-
cian with the corresponding Green’s function. The Green’s function is represented as an integral combination
of plane waves. The plane waves in turn are represented as integral combinations of Heavisides. This gives the
desired representation of the original function.
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Throughout the argument x is an arbitrary fixed member of Rd, while y in Rd is variable and 
 = 
y.
First we show that wf is finite and continuous. Indeed, the integrands in the definition of wf in Section 4 are

sums involving derivatives of order kd since they contain iterated Laplacians.
In the odd case, when |α| = kd = d+ 1, the summands satisfy

|∂αf(y)| ≤ C

(‖y‖2 + 1)(d+1+ε)/2

for all y in Rd and some ε > 0 where C is a constant depending on f and α. Thus in spherical coordinates,
where r =‖ y ‖ and dΩ is the area element on Sd−1, integrating over all of Rd rather than just H−

e,b, we find:

∫
Rd

|∂αf(y)| dy ≤
∫

[0,∞)×Sd−1

C

(r2 + 1)(d+1+ε)/2
rd−1 dΩ dr

≤ Cωd

∫ ∞

0

dr

(r2 + 1)(2+ε)/2

≤ Cωd
π

2
.

Hence, for d odd, wf is finite and Lebesgue’s Dominated Convergence Theorem [12, p. 172] applied to the

effective integrand 
 d+1
2 f(y)θ(−e · y − b) shows that wf is continuous.

In the even case, when |α| = kd = d+ 2, the summands satisfy

|∂αf(y)||α(e · y + b)| ≤ C|α(e · y + b)|
(‖y‖2 + 1)(d+2+ε)/2

for ‖y‖ in Rd. If we adopt a coordinate system in which y = (y1,y⊥) with y1 = e · y and y⊥ ∈ Rd−1, and
ρ = ‖y⊥‖, we obtain:∫

Rd

|∂αf(y)||α(e · y + b)| dy ≤
∫
R×[0,∞)×Sd−2

C|α(y1 + b)|
(y2

1 + ρ2 + 1)(d+2+ε)/2
ρd−2 dΩ dρ dy1.

We make the substitution ρ =
√
y2
1 + 1 tan θ, so that dρ =

√
y2
1 + 1 sec2 θ dθ where sec denotes Sekans, and

the right side becomes:

Cωd−1

∫
R

∫ π/2

θ=0

|α(y1 + b)|(y2
1 + 1)(d−1)/2

(y2
1 + 1)(d+2+ε)/2

tand−2 θ sec2 θ dθ dy1
secd+2+ε θ

≤ Cωd−1
π

2

∫
R

|α(y1 + b)| dy1
(y2

1 + 1)(3+ε)/2
.

The last integral is an even function of b: replace b by −b and y1 by −y1. So we may assume b ≥ 0. Since
|α(t)| ≤ 1 for |t| ≤ e+ 1, this integral is dominated by the following sum:∫
|y1+b|≤e+1

dy1
(y2

1 + 1)(3+ε)/2
+
∫
|y1+b|≥e+1,|y1|≤b

|α(y1 + b)| dy1
(y2

1 + 1)(3+ε)/2
+
∫
|y1+b|≥e+1,|y1|≥b

|α(y1 + b)| dy1
(y2

1 + 1)(3+ε)/2
.

Since e ≤ |t1| ≤ |t2| implies |α(|t1|)| ≤ |α(|t2|)| and in the second and third integrals immediately above
e+ 1 ≤ |y1 + b| ≤ |y1| + b ≤ max {2|y1|, 2b}, the sum is dominated by:∫

R

(1 + |α(2b)| + |α(2|y1|)|) dy1
(y2

1 + 1)(3+ε)/2
.

Since the integrands in these successive inequalities are continuous functions of b, or of b and e, and the last
integral is finite and continuously dependent on b, Lebesgue’s Dominated Convergence Theorem applies as in the
odd case, and so wf is finite and continuous.
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7.1 The case of odd d

7.1.1 Finding the Green’s function

For i = 0, 1, . . . , d+1
2 let

ui = 
if, vi = 
 d+1
2 −i ‖ x − y ‖,

where differentiation in the Laplacians is with respect to the variable y. Then for 0 < i < d+1
2 , ui and vi+1 are

twice continuously differentiable except when y = x since f is in Cd+1, and we assert that for such i:∫
Rd

uivi dy =
∫
Rd

ui 
 vi+1 dy =
∫
Rd


uivi+1 dy =
∫
Rd

ui+1vi+1 dy. (7.1)

The middle equation is based on Green’s identity for ui, vi+1 on the region D in Section 3, Equation (3.1), and
requires that the corresponding boundary integrals vanish as R tends to ∞ and δ tends to 0. These conditions
will be established below.

First we must show that uivi is integrable for 0 ≤ i ≤ d+1
2 . Since uivi is continuous, we only need investigate

behavior as y tends to ∞ or y tends to x. We make extensive use of the following identities:


 (‖ x − y ‖a) = a(a+ d− 2) ‖ x − y ‖a−2


m (‖ x − y ‖a) = C(a,m, d) ‖ x − y ‖a−2m

C(a,m, d) = Πm−1
j=0 (a− 2j)Πm

j=1(a+ d− 2j),

(7.2)

valid for y �= x, any real number a, and any integer m > 0. The decay condition on f assumed in the theorem
provides an ε > 0 such that

|ui(y)| ≤ 1
‖ y ‖2i+ε

for ‖ y ‖ sufficiently large. Using the identities (7.2), we find that

|vi(y)| =
∣∣∣∣C
(

1,
d+ 1

2
− i, d

)∣∣∣∣ ‖ x − y ‖1−2( d+1
2 −i)

for y �= x. Since lim‖y‖−→∞
‖y‖

‖x−y‖ = 1, with A any real number larger than C
(
1, d+1

2 − i, d
)

and R suffi-
ciently large, we obtain in spherical coordinates centered on the origin:∫

{y :‖y‖≥R}
|uivi| dy ≤

∫
[R,∞)×Sd−1

A

r2i+ε
r1−2( d+1

2 −i)rd−1 dr dΩ

=
∫

[R,∞)×Sd−1

A

r1+ε
dr dΩ

=
Aωd

εRε

<∞.

Likewise, for δ > 0 and i > 0, in spherical cordinates centered on x, we have:∫
{y :0<‖x−y‖≤δ}

|uivi| dy ≤
∫

(0,δ]×Sd−1
Br1−2( d+1

2 −i)rd−1 dr dΩ

=
∫

(0,δ]×Sd−1
Br2i−1 dr dΩ

=
Bδ2iωd

2i
<∞
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where B = max {|ui(y)| : ‖ x − y ‖≤ δ}C (1, d+1
2 − i, d

)
. When i = 0, there is nothing to prove since

C
(
1, d+1

2 , d
)

= 0 and so v0 ≡ 0. Thus uivi is integrable as claimed.
Now we show that the boundary integrals vanish. For R sufficiently large there is a constant C such that∫

{y :‖y‖=R}

∣∣∣∣ui
∂vi+1

∂n
− vi+1

∂ui

∂n

∣∣∣∣ dSy ≤
∫

Sd−1

C

R2i+ε
R1−2( d+1

2 −(i+1))−1Rd−1 dΩ

=
∫

Sd−1

C dΩ
Rε

=
Cωd

Rε
,

where ε is from the decay condition on f . Indeed, ∂
∂n = ±Σd

i=1
yi

r
∂

∂yi
and

∣∣ ∂
∂n (‖ x − y ‖a)

∣∣ ≤ a ‖ x − y ‖a−1

so that ∣∣∣∣ui(y)
∂vi

∂n
(y)
∣∣∣∣ ≤ 1

R2i+ε
C1 ‖ x − y ‖1−2( d+1

2 −i)−1, and

∣∣∣∣vi+1(y)
∂ui

∂n
(y)
∣∣∣∣ ≤ C2 ‖ x − y ‖1−2( d+1

2 −i)

R2i+ε+1

for suitable constantsC1 and C2 depending on i and d. Since ‖x−y‖
‖y‖ ∼ 1 for ‖ y ‖ sufficiently large, we can take

C > C1 + C2 to obtain the above estimate on the boundary integral for large R. For δ near 0, ∂
∂n = − ∂

∂r where
r is the radial coordinate with center x, and∫

{y :‖x−y‖=δ}

∣∣∣∣ui
∂vi+1

∂n
− vi+1

∂ui

∂n

∣∣∣∣ dSy

≤
∫

Sd−1

{
D1δ

1−2( d+1
2 −(i+1))−1 +D2δ

1−2( d+1
2 −(i+1))

}
δd−1 dΩ

=
{
D1δ

2i +D2δ
2i+1

}
ωd

where

D1 = max {|ui(y)| : ‖ x − y ‖≤ δ} · C
(

1,
d+ 1

2
− (i+ 1), d

)
|2(i+ 1) − d| and

D2 = max
{∣∣∣∣∂ui

∂n
(y)
∣∣∣∣ : ‖ x − y ‖≤ δ

}
· C
(

1,
d+ 1

2
− (i+ 1), d

)
.

As R tends to ∞ and δ to 0+, these estimates show that all boundary integrals vanish for 0 < i < d+1
2 . This

establishes (7.1).
When i = 0, the boundary integrals vanish with one exception:

∫
{y :‖y−x‖=δ}

u0
∂v1
∂n

dSy = −
∫

Sd−1
f(y)

∂ 
 d−1
2 (‖ x − y ‖)

∂r

∣∣∣∣
r=δ

δd−1 dΩ

= −
∫

Sd−1
f(y)

∂

∂r

(
C

(
1,
d+ 1

2
− 1, d

)
‖ x − y ‖1−2( d+1

2 −1)

) ∣∣∣∣
r=δ

δd−1 dΩ

= −
∫

Sd−1
f(y)C

(
1,
d+ 1

2
− 1, d

)
(2 − d)δ1−dδd−1 dΩ

=
∫

Sd−1
f(y)(−1)

d+1
2 (d− 1)! δ1−dδd−1 dΩ,

where y = x + δe, e ∈ Sd−1, and this integral tends to f(x)(−1)
d+1
2 (d− 1)!ωd as δ tends to 0.
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864 Kainen, Kůrková, and Vogt: Integral combinations of Heavisides

By (7.1) ∫
Rd

u1v1 dy = · · · =
∫
Rd

u d+1
2
v d+1

2
dy,

and by Green’s identity again and the fact that v0 ≡ 0

0 =
∫
Rd

u0v0 dy

=
∫
Rd

u1v1 dy + lim
R−→∞,δ−→0+

∫
{y :‖x−y‖=δor‖y‖=R}

u0

(
∂v1
∂n

− v1
∂u0

∂n

)
dSy

=
∫
Rd

u d+1
2
v d+1

2
dy − f(y)(−1)

d−1
2 (d− 1)!ωd.

Hence

f(x) = cd

∫
Rd


 d+1
2 f(y)‖x − y‖ dy (7.3)

with cd = (−1)
d−1
2

(d−1)! ωd
. So cd ‖ y ‖ is the Green’s function for 
 d+1

2 in Rd (d odd).

Determining wf . By Lemmas 6.2 and 6.1, applied to the function |t|, we have:

‖x− y‖ = sd

∫
Sd−1

|e · (x − y)| de

= sd

∫
Sd−1

(∫ ∞

0

ϑ(e · (x − y) − t) dt+
∫ 0

−∞
ϑ(t− e · (x − y)) dt

)
de.

Now set b = −e ·y− t in the first integral and b = e ·y+ t in the second, and use the identity
∫

Sd−1 g(−e) de =∫
Sd−1 g(e) de (true for any integrable function g). Then

‖x− y‖ = sd

∫
Sd−1

(∫ −e·y

−∞
ϑ(e · x + b) db+

∫ e·y

−∞
ϑ(−e · x + b) db

)
de

= 2sd

∫
Sd−1

∫ −e·y

−∞
ϑ(e · x + b) db de

= 2sd

∫
Sd−1

∫
R
ϑ(−e · y − b)ϑ(e · x + b) db de.

Substituting this expression for ‖ x − y ‖ into (7.3), and supposing that we may change the order of integration,
we obtain the representation of Theorem 4.2 for d odd:

f(x) = 2cdsd

∫
Sd−1

∫
R

(∫
Rd


 d+1
2 f(y)ϑ(−e · y − b) dy

)
ϑ(x · e + b) de db

=
∫

Sd−1×R
wf (e, b)ϑ(x · e + b) db de.

Change in the order of integration is justified by Fubini’s Theorem (cf. [12, p. 386]). For each x in Rd,
(y, e, b) �−→ 
 d+1

2 f(y)ϑ(−e · y − b)ϑ(e · x + b) is integrable with absolute integral∫
Rd

∫
Sd−1

∫
R

∣∣∣
 d+1
2 f(y)

∣∣∣ |ϑ(−e · y − b)ϑ(e · x + b)| db de dy

≤
∫
Rd

∫
Sd−1

∣∣∣
 d+1
2 f(y)

∣∣∣ |e · (x − y)| de dy ≤ ωd

∫
Rd

| 
 d+1
2 f(y)| ‖ x − y ‖ dy,
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which is bounded since lim‖y‖−→∞
‖x−y‖
‖y‖ = 1 and for large R:

∫
{y :‖y‖≥R}

∣∣∣
 d+1
2 f(y)

∣∣∣ ‖ y ‖ dy ≤
∫
‖y‖≥R

1
rd+1+ε

r · rd−1 dr dΩ =
∫
‖y‖≥R

dr dΩ
r1+ε

=
ωd

εRε
.

In particular, by Fubini the intermediate integrand wf (e, b)ϑ(e · x + b) is integrable on Sd−1 ×R.

7.2 The case of even d

The argument in this case is similar to the odd case except that we construct both wf and an alternative weight
function ŵf .

7.2.1 Finding the Green’s function

Proceeding as in the odd case, we let

ui = 
if, vi = 
 d
2−i(log ‖ x − y ‖)

for 0 ≤ i ≤ d
2 . We shall establish that equations (7.1) hold for these choices of ui and vi and 0 < i < d

2 .
We shall need the following identities:


 (log ‖ x − y ‖) = (d− 2) ‖ x − y ‖−2,


m (log ‖ x − y ‖) = C(−2,m− 1, d)(d− 2) ‖ x − y ‖−2m for m ≥ 2,
(7.2’)

where C(·, ·, ·) is as in (7.2). These identities imply that v0(y) = 
 d
2 (‖ x− y ‖) ≡ 0.

The function uivi is integrable for 0 ≤ i ≤ d
2 . Indeed,

∫
{y :‖y‖≥R}

|uivi| dy ≤
∫

[R,∞)×Sd−1

A

r2i+ε
r−2( d

2−i)rd−1 dr dΩ

=
∫

[R,∞)×Sd−1

Adr dΩ
r1+ε

=
Aωd

εRε

for r =‖ y ‖≥ R with R large, i < d
2 , and a suitable constant A depending on i and d. For i = d

2 and R large

∫
{y :‖y‖≥R}

|u d
2
v d

2
| dy ≤

∫
[R,∞)×Sd−1

1
rd+ε

(log r)rd−1 dr dΩ

=
∫

[R,∞)×Sd−1

log r
r1+ε

dr dΩ

=
(1 + ε logR)ωd

ε2Rε
.

For δ > 0 and 0 < i < d
2 ,

∫
{y :0<‖x−y‖≤δ}

|uivi| dy ≤
∫

(0,δ]×Sd−1
Br−2( d

2−i)rd−1 dr dΩ

=
∫

(0,δ]×Sd−1
Br2i−1 dr dΩ

=
Bδ2iωd

2i
,
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where B = max {| 
i f(y)| : ‖ x − y ‖≤ δ} · A with A as above. When i = d
2 and δ < 1,∫

{y :0<‖x−y‖≤δ}

∣∣u d
2
v d

2

∣∣ dy ≤
∫

(0,δ]×Sd−1
K| log r|rd−1 dr dΩ =

Kδd|d log δ − 1|ωd

d2
,

where K = max
{∣∣∣
 d

2 f(y)
∣∣∣ : ‖ x − y ‖≤ δ

}
. Thus, uivi is integrable.

We now establish the vanishing of the boundary integrals in Green’s second identity to show that (7.1) holds.
For 0 ≤ i < d

2 and large R

∫
{y :‖y‖=R}

∣∣∣∣ui
∂vi+1

∂n
− vi+1

∂ui

∂n

∣∣∣∣ dSy ≤
∫

Sd−1

C

R2i+ε
R−2( d

2−(i+1))−1Rd−1 dΩ

=
∫

Sd−1

C dΩ
Rε

=
Cωd

Rε
,

where C is a constant depending on i and d (obtained by combining two constants C1 and C2 for the two terms
as in the odd case). For δ near 0∫

{y :‖x−y‖=δ}

∣∣∣∣ui
∂vi+1

∂n
− vi+1

∂ui

∂n

∣∣∣∣ dSy

≤
∫

Sd−1

{
D1δ

−2( d
2−(i+1))−1 +D2δ

−2( d
2−(i+1))

}
δd−1 dΩ

=
{
D1δ

2i +D2δ
2i+1

}
ωd

where D1 and D2 are suitable constants as in the odd case. As R tends to ∞ and δ goes to 0+, the boundary
integrals tend to 0 and so (7.1) is valid.

For i = 0, as in the case of odd d, there is one non-negligible term in the boundary integral. By (7.2’)∫
{y :‖x−y‖=δ}

u0
∂v1
∂n

dSy = −
∫

Sd−1
f(y)

∂

∂r

∣∣∣∣
r=δ


 d−2
2 (log ‖ x − y ‖)δd−1 dΩ

= −
∫

Sd−1
f(y)C

(
−2,

d− 2
2

− 1, d
)

(d− 2)
∂

∂r

∣∣∣∣
r=δ

(r2−d)δd−1 dΩ

=
∫

Sd−1
f(y)(−1)

d
2

{(
d− 2

2

)
!
}2

2d−2δ1−dδd−1 dΩ,

and this integral tends to f(x)(−1)
d
2 {(d−2

2 )!}22d−2ωd as δ tends to 0. As in the odd case, cf. (7.3),

lim
δ−→0+

−
∫
{y : ‖x−y‖=δ}

u0
∂v1
∂n

dSy =
∫
Rd

u1v1 dy =
∫
Rd

u d
2
v d

2
dy,

and so

f(x) = cd

∫
Rd


 d
2 f(y) log ‖x− y‖ dy (7.4)

where cd = (−1)
d−2
2

2d−2ωd{( d−2
2 )!}2 . Thus cd log ‖y‖ is the Green’s function for 
 d

2 in Rd (d even).

Determining ŵf . By Lemma 6.3

log ‖x− y‖ = bd +
1
ωd



(∫

Sd−1
β(e · (x − y)) de

)
. (7.5)
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The Divergence Theorem [3, p. 423] implies that∫
Rd


 d
2 f(y) dy = lim

R−→∞

∫
{y : ‖y‖ =R}

∂

∂n

(
 d−2
2 f

)
(y)dSy = 0

since ∫
{y : ‖y‖=R}

∣∣∣∣ ∂∂n(
 d−2
2 f

)
(y)
∣∣∣∣ dSy ≤

∫
{y : ‖y‖=R}

1

R2( d−2
2 )+1+ε

Rd−1 dΩ =
ωd

Rε

for large R. Using this fact and substituting (7.5) into (7.4), we can eliminate the term involving bd to obtain:

f(x) =
cd
ωd

∫
Rd


 d
2 f(y) 


(∫
Sd−1

β(e · (x − y)) de
)
dy.

Then application of Green’s identity converts this into:

f(x) =
cd
ωd

∫
Rd


 d+2
2 f(y)

(∫
Sd−1

β(e · (x − y)) de
)
dy. (7.6)

Indeed, to apply (3.1), let u(y) = 
 d
2 f(y) and v(y) =

∫
Sd−1 β(e · (x − y)) de. Then the boundary integral in

(3.1) decomposes into two parts, one an integral over {y : ‖ x− y ‖= δ} tending to 0 as δ does, while the other
satisfies: ∫

{y :‖y‖=R}

∣∣∣∣u∂v∂n − v
∂u

∂n

∣∣∣∣ dSy ≤
∫

Sd−1

(
C1R logR
Rd+ε

+
C2R

2 logR
Rd+1+ε

)
Rd−1 dΩ

=
(C1 + C2) logRωd

Rε
,

which approaches 0 as R tends to ∞. Note here that

∣∣∣∣ ∂v∂n(y)
∣∣∣∣ =

∣∣∣∣∣
d∑

i=1

yi

R

∂v

∂yi
(y)

∣∣∣∣∣ =
∣∣∣∣ 1R
∫

Sd−1
y · eβ′(e · (x − y)) de

∣∣∣∣ ≤
∫

Sd−1
|β′(e · (x − y))| de

≤ |β′(‖ x − y ‖)ωd| ≤ C1R logR

and

|v(y)| ≤
∫

Sd−1
|β(e · (x − y))| de ≤ C2R

2 logR

for ‖ y ‖= R large and suitable constants C1 and C2. So (7.6) holds.
From Lemma 6.1, and the identities

∫
Sd−1 g(−e) de =

∫
Sd−1 g(e) de and β′(−t) = −β′(t), we obtain:∫

Sd−1
β(e · (x − y)) de

=
∫

Sd−1

(∫ ∞

0

β′(t)ϑ(e · (x − y) − t) dt−
∫ 0

−∞
β′(t)ϑ(t − e · (x − y)) dt

)
de

=
∫

Sd−1

(∫ −e·y

−∞
β′(−e · y − b)ϑ(e · x + b) db−

∫ e·y

−∞
β′(b − e · y)ϑ(b − e · x) db

)
de

= 2
∫

Sd−1

∫
R
β′(−e · y − b)ϑ(−e · y − b)ϑ(e · x + b) db de.

Substituting the last expression into (7.6) and rearranging terms, we have:

f(x) =
2cd
ωd

∫
Sd−1

∫
R

(∫
Rd


 d+2
2 f(y)β′(−e · y − b)ϑ(−e · y − b) dy

)
ϑ(e · x + b) db de.
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Hence,

f(x) =
∫

Sd−1×R
ŵf (e, b)ϑ(x · e + b) de db,

where

ŵf (e, b) =
2cd
ωd

∫
H−

e,b


 d+2
2 f(y)α(e · y + b) dy, (7.7)

since α(t) = β′(−t).
As before, change in the order of integration is justified by Fubini’s Theorem. Indeed∫

Rd

∫
Sd−1

∫
R

∣∣∣
 d+2
2 f(y)

∣∣∣ |α(e · y + b)||ϑ(−e · y − b)ϑ(e · x + b)| db de dy

≤
∫
Rd

∫
Sd−1

∣∣∣
 d+2
2 f(y)

∣∣∣max {1, |α(|e · (y − x)|)|}|e · (y − x)| de dy

≤ ωd

∫
Rd

∣∣∣
 d+2
2 f(y)

∣∣∣max {1, |α(‖ y − x ‖)|} ‖ y − x ‖ dy,

which follows from the inequality |α(t)| ≤ max {1, |α(s)|} for |t| ≤ |s|. Since

lim
‖y‖−→∞

‖ x − y ‖ |α(‖ x − y ‖)|
‖ y ‖ |α(‖ y ‖)| = 1,

we take R large and boundedness follows from:∫
{y:‖y‖≥R}

∣∣∣
 d+2
2 f(y)

∣∣∣ ‖ y ‖ |α(‖ y ‖)| dy ≤
∫
‖y‖≥R

Cr2(log r)rd−1 dr dΩ
rd+2+ε

= Cωd

∫ ∞

R

log r dr
r1+ε

<∞.

In particular ŵf (e, b)ϑ(e · x + b) is integrable on Sd−1 ×R.

Properties of ŵf . Equation (7.7) gives us a weight function ŵf for an integral formula. However, to obtain
the weight function wf in the theorem, we first need two properties of ŵf , namely:

(P1) For b0 ∈ R there exist η > 0 and M > 0 such that |ŵf (e, b)| ≤ M/(b2 + 1)(1+η)/2 for all e ∈ Sd−1

and all b ≥ b0; and

(P2) limK−→∞
∫∞
−K

ŵf (e, b) db = 0 uniformly for e ∈ Sd−1.

To establish (P1), fix e, choose rectangular coordinates y = (y1,y⊥) with y1 = e · y, and set ρ =‖ y⊥ ‖.
Then, arguing as before, we have:

ωd

2cd
|ŵf (e, b)| ≤

∫
H−

e,b

∣∣∣
 d+2
2 f(y)

∣∣∣ |α(e · y + b)| dy

≤
∫ −b

−∞

∫
y⊥∈Rd−1

C|α(y1 + b)| dy⊥ dy1
(‖ y ‖2 +1)(d+2+ε)/2

=
∫ −b

−∞

∫
[0,∞)×Sd−2

C|α(y1 + b)|ρd−2 dρ dΩ dy1
(y2

1 + ρ2 + 1)(d+2+ε)/2

= Cωd−1

∫ −b

y1=−∞

∫ π
2

θ=0

|α(y1 + b)| sind−2 θ cos2+ε θ dθ dy1
(y2

1 + 1)(3+ε)/2
≤
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≤ Cωd−1
π

2

∫ −b

y1=−∞

|α(y1 + b)| dy1
(y2

1 + 1)(3+ε)/2

= Cωd−1
π

2

∫ ∞

0

|α(t)| dt
((t+ b)2 + 1)(3+ε)/2

.

The last integral is a continuous function of b defined for all values of b. Noting that |α(t)| ≤ 1 for |t| ≤ e and
|α(t)| ≤ t1+δ

δ(1+δ) for t ≥ e and any δ > 0, we see that when b ≥ 0 and ε > δ > 0:

(∫ e

0

+
∫ ∞

e

) |α(t)| dt
((t+ b)2 + 1)(3+ε)/2

≤ e

(b2 + 1)(3+ε)/2
+
∫ ∞

e

(t+ b)1+δ dt

δ(1 + δ)(t+ b)3+ε

≤ e

(b2 + 1)(3+ε)/2
+

1
δ(1 + δ)(1 + ε− δ)(e+ b)1+ε−δ

≤
e+ 1

δ(1+δ)(1+ε−δ)

(b2 + 1)(1+ε−δ)/2
.

Hence, (P1) holds for b ≥ 0 and η = ε− δ. If b0 < 0, continuity on the interval [b0, 0] allows us to draw the same
conclusion for b ≥ b0 (with the constant M replaced by a larger constant that depends on b0).

To prove (P2), note first that (P1) implies that for fixed e the mapping b �−→ ŵf (e, b) is integrable on intervals
of the form [−K,∞). Furthermore, Fubini’s Theorem in combination with the argument for (P1) allows us to
change the order of integration. Since all partials with respect to variables other than y1 can be integrated out and
evaluated at infinity (where the antiderivatives vanish), we find that

ωd

2cd

∫ ∞

−K

ŵf (e, b) db =
∫ ∞

−K

∫
H−

e,b


 d+2
2 f(y)α(e · y + b) dy db

=
∫ ∞

−K

∫ −b

y1=−∞

∫
y⊥∈Rd−1


 d+2
2 f(y)α(y1 + b) dy⊥ dy1 db

=
∫ ∞

−K

∫ −b

y1=−∞

∫
y⊥∈Rd−1

(
∂

∂y1

)d+2

f(y)α(y1 + b) dy⊥ dy1 db

=
∫
y⊥∈Rd−1

I(y⊥) dy⊥,

where

I(y⊥) =
∫ ∞

−K

∫ −b

−∞

(
∂

∂y1

)d+2

f(y)α(y1 + b) dy1 db

=
∫ K

−∞

∫ −y1

−K

(
∂

∂y1

)d+2

f(y)α(y1 + b) db dy1

=
∫ K

−∞

∫ −y1

−K

(
∂

∂y1

)d+2

f(y)β′(−y1 − b) db dy1

=
∫ K

−∞

(
∂

∂y1

)d+2

f(y)β(K − y1) dy1

=
∫ K

−∞

(
∂

∂y1

)d+1

f(y)α(y1 −K) dy1

=
∫ K−

−∞

(
∂

∂y1

)d

f(y) log |y1 −K|dy1.

Here we have used integration by parts, properties of β and α, and the decay condition satisfied by f . The last
integral decomposes further as:
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(∫ K−1

−∞
+
∫ K−

K−1

)(
∂

∂y1

)d

f(y) log |y1 −K|dy1

= log |y1 −K|
(

∂

∂y1

)d−1

f(y)

∣∣∣∣∣
K−1

y1=−∞
+
∫ K−1

−∞

( ∂
∂y1

)d−1f(y) dy1
K − y1

+ (y1 −K) log |y1 −K|
( ∂

∂y1
)d−1f(y) − ( ∂

∂y1
)d−1f(K,y⊥)

y1 −K

∣∣∣∣∣
K−

K−1

+
∫ K−

K−1

((
∂

∂y1

)d−1

f(y) −
(

∂

∂y1

)d−1

f(K,y⊥)

)(
1

K − y1

)
dy1

=
∫ K−1

−∞

(
∂

∂y1

)d−1

f(y) dy1

K − y1
+
∫ K−

K−1

((
∂

∂y1

)d−1

f(y) −
(

∂

∂y1

)d−1

f(K,y⊥)

)(
1

K − y1

)
dy1

=: I1(y⊥) + I2(y⊥).

We now integrate with respect to y⊥. For K > 1 by the Mean Value Theorem:

∣∣∣∣
∫
Rd−1

I2(y⊥) dy⊥
∣∣∣∣

=

∣∣∣∣∣
∫ K−

K−1

∫
Rd−1

((
∂

∂y1

)d−1

f(y) −
(

∂

∂y1

)d−1

f(K,y⊥)

)(
1

y1 −K

)
dy1 dy⊥

∣∣∣∣∣
≤
∫
Rd−1

max
K−1≤y1≤K

∣∣∣∣∣
(

∂

∂y1

)d

f(y)

∣∣∣∣∣ dy⊥

≤
∫

[0,∞)×Sd−2

Cρd−2 dΩ dρ
((K − 1)2 + ρ2 + 1)(d+ε)/2

= Cωd−1

∫ π/2

0

1
((K − 1)2 + 1)(1+ε)/2

sind−2 θ cosε θ dθ

≤ Cωd−1
π

2((K − 1)2 + 1)(1+ε)/2
,

where we have used the substitution ρ =
(√

(K − 1)2 + 1
)

tan θ. As K tends to infinity, this integral tends

to 0.
Likewise,

∣∣∣∣
∫
Rd−1

I1(y⊥) dy⊥
∣∣∣∣ =

∣∣∣∣∣
∫ K−1

−∞

∫
Rd−1

( ∂
∂y1

)d−1f(y) dy⊥ dy1
y1 −K

∣∣∣∣∣
≤
∫ K−1

−∞

∫
[0,∞)×Sd−2

Cρd−2 dΩ dρ dy1
|y1 −K|(y2

1 + ρ2 + 1)(d−1+ε)/2

= Cωd−1

∫ K−1

−∞

∫ π
2

0

sind−2 θ dy1 dθ

|y1 −K|(y2
1 + 1)ε/2 cos1−ε θ

≤ Cωd−1π

2ε

∫ K−1

−∞

dy1
|y1 −K|(y2

1 + 1)ε/2
,

which uses the inequality cos1−ε θ ≥ (1 − 2
π θ
)1−ε

for ε ≤ 1 and 0 ≤ θ ≤ π
2 . Ignoring the scale factors in front

and making the substitution u = K − y1, we rewrite the last integral as:
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∫ ∞

1

du

u((K − u)2 + 1)ε/2

=

(∫ K−1

1

+
∫ K+1

K−1

+
∫ ∞

K+1

)
du

u((K − u)2 + 1)ε/2

≤
∫ K−1

1

du

u(K − u)ε
+
∫ K+1

K−1

du

u
+
∫ ∞

1

dv

(v +K)(v2 + 1)ε/2

≤ (K − 1)1−ε

K

∫ K−1

1

(
1
u

+
1

K − u

)
du+ log

K + 1
K − 1

+
∫ ∞

1

dv

(v +K)(v2 + 1)ε/2

=
2(K − 1)1−ε log (K − 1)

K
+ log

K + 1
K − 1

+
∫ ∞

1

dv

(v +K)(v2 + 1)ε/2
.

As K tends to ∞, the first two terms tend to 0, while the integral is dominated by
∫∞
1

dv
v1+ε = 1

ε and so also tends
to 0 by Lebesgue’s Dominated Convergence Theorem. Thus (P2) is established.

Replacing ŵf by wf . Since ad = cd

ωd
for d even, we can express wf in terms of ŵf , using

∫
Rd =∫

H+
e,b

+
∫

H−
e,b

and the oddness of α, as:

wf (e, b) =
1
2
(ŵf (e, b) − ŵf (−e,−b)).

Then∫
Sd−1×(−∞,K]

wf (e, b)θ(e · x + b) de db

=
∫

Sd−1×(−∞,K]

ŵf (e, b)θ(e · x + b) de db−
∫

Sd−1×(−∞,K]

1
2
(ŵf (e, b) + ŵf (−e,−b))θ(e · x + b) de db.

The first integral in the last expression tends to f(x) as K tends to ∞ by (7.7). So it suffices to show that the
second integral tends to 0 as K tends to ∞. Indeed, for K >‖ x ‖,∫

Sd−1×(−∞,K]

(ŵf (e, b) + ŵf (−e,−b))θ(e · x + b) de db

=
∫

Sd−1×(−∞,K]

ŵf (e, b)θ(e · x + b) de db+
∫

Sd−1×[−K,∞)

ŵf (e, b)θ(−e · x − b) de db

=
∫

Sd−1

∫ max {K,−e·x}

−e·x
ŵf (e, b) db de +

∫
Sd−1

∫ −e·x

min {−K,−e·x}
ŵf (e, b) db de

=
∫

Sd−1

∫ K

−K

ŵf (e, b) db de.

However,
∫K

−K ŵf (e, b) db tends to 0 uniformly in e as K tends to ∞ since by (P1)
∫∞

K tends to 0 and by (P2)∫∞
−K tends to 0. This completes the proof.

8 Alternative representations

The formulas for wf in the Representation Theorem (Theorem 4.2) can be written in several alternative forms,
some of which have appeared in the literature under stronger hypotheses.

Kůrková, Kainen and Kreinovich [19] used distributional techniques from Courant and Hilbert [5] to show
that if f is a compactly supported function on Rd with continuous d-th order partials, and d is odd, then f can be
represented as in (4.1), where wf is as in (8.3) below.
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Ito [13] and Carroll and Dickinson [4] treated both the odd and the even case, basing their work on Helgason’s
book on the Radon Transform [11], and obtained a representation for C∞ functions of rapid descent (Ito) and
C∞ functions of compact support (Carroll and Dickinson).

The connection of previous work to the two propositions below is discussed at the end of this section.
In the following proposition we make use of principal value integration (cf. Zemanian [20, p. 18]) and di-

rectional derivatives. Thus p.v.
∫
Rd

φ(y) dy
e·y+b := limδ−→0+

∫
{y : |e·y+b|≥δ}

φ(y) dy
e·y+b provided the latter exists; and

D
(k)
e refers to the k-th order directional derivative in the direction e.

Proposition 8.1 Let f be of controlled decay. For d odd

wf (e, b) = ad

∫
H−

e,b


 d+1
2 f(y) dy (8.1)

= ad

∫
H−

e,b

D(d+1)
e f(y) dy (8.2)

= ad

∫
He,b

D(d)
e f(y) dHy. (8.3)

For d even,

wf (e, b) = ad

∫
Rd


 d+2
2 f(y)α(e · y + b) dy (8.4)

= ad

∫
Rd

D(d+2)
e f(y)α(e · y + b) dy (8.5)

= ad

∫
Rd

D(d+1)
e f(y) log |e · y + b|dy (8.6)

= −ad p.v.
∫
Rd

D
(d)
e f(y)

e · y + b
dy. (8.7)

If f is of controlled decay and also satisfies

ord ∂αf > d− 1 for 0 ≤ |α| ≤ d− 2, (8.8)

then for d odd

wf (e, b) = −ad (
∂

∂a
)d

(∫
He,a

f(y) dHy

)∣∣∣∣∣
a=b

(8.9)

and for d even

wf (e, b) = −ad

(
∂

∂a

)d(
p.v.
∫
Rd

f(y)
e · y + a

dy
)∣∣∣∣∣

a=b

. (8.10)

P r o o f. The odd case. In the case d = 1 Equations (8.1)–(8.3), and (8.9) are trivial and wf (e, b) agrees with
Proposition 5.1. Suppose d ≥ 3. The integral in (8.1), from Theorem 4.2,∫

H−
e,b


 d+1
2 f(y) dy

is an integral over the half-space where y · e + b ≤ 0. If we adopt a rectangular coordinate system in which
y1 = y · e, the iterated Laplacian 
 d+1

2 f(y) retains its usual form with 
 = ∂2

∂y2
1

+ · · · + ∂2

∂y2
d

. The integrand

consists of a sum of partial derivatives of f of order d + 1 all but one of which can be expressed in the form ∂u
∂yi
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for some i �= 1 and some function u, itself a partial derivative of f of order d, by interchanging the order of
differentiation. Integrating each such term, but integrating first with respect to yi, we find that∫

H−
e,b

∂u

∂yi
(y) dy =

∫
y1≤−b,(y2,...,yi−1,yi+1,...,yd)∈Rd−2

(∫ ∞

yi=−∞

∂u

∂yi
(y)dyi

)
dy1 . . . dyi−1dyi+1 . . . dyd

=
∫

y1≤−b,(y2,...,yi−1,yi+1,...,yd)∈Rd−2
u(y)|∞yi=−∞ dy1 . . . dyi−1dyi+1 . . . dyd

= 0

since limyi−→∞ u(y) = lim‖y‖−→∞ u(y) = 0. Use of Fubini’s Theorem is justified since | ∂u
∂yi

|, a derivative of

order d+ 1 dominated at infinity by 1
‖y‖d+1+ε , is integrable over Rd and over H−

e,b.
Accordingly the integral of interest reduces to:

∫
H−

e,b

(
∂

∂y1

)d+1

f(y) dy.

Then we integrate with respect to y1 first of all, obtaining:

∫
Rd−1

(
∂

∂y1

)d

f(y)

∣∣∣∣∣
y1=−b

y1=−∞
dy2 . . . dyd =

∫
Rd−1

(
∂

∂y1

)d

f(−b,y⊥) dy⊥

= −
(
∂

∂a

)d (∫
Rd−1

f(−a,y⊥) dy⊥
)∣∣∣∣∣

a=b

,

where shifting the partial derivatives outside the integral is justified below. The above expressions are identical,
except for the omitted factor ad, with (8.2), (8.3), and (8.9) above since dy⊥ = dHy, and ∂

∂y1
and its iterates are

directional derivatives in the direction of e, i.e., normal to the hyperplaneHe,b.
Shifting the partials is permitted if we show that∫

Rd−1

∂v

∂yi
(−b,y⊥) dy⊥ = −

(
∂

∂a

)(∫
Rd−1

v(−a,y⊥) dy⊥
)∣∣∣∣

a=b

for any real number b where v =
(

∂
∂y1

)i
f for i = 0, . . . , d − 1. By the definition of a derivative, it suffices to

show that ∫
Rd−1

(
v(−b− h,y⊥) − v(−b,y⊥)

h
+

∂v

∂y1
(−b,y⊥)

)
dy⊥

=
∫
Rd−1

(∫ 1

s=0

(
∂v

∂y1
(−b,y⊥) − ∂v

∂y1
(−b− sh,y⊥)

)
ds

)
dy⊥

tends to 0 as h approaches 0.
The controlled decay property and (8.8) imply that lim‖y‖−→∞ ∂v

∂y1
(y)‖y‖d−1+ε = 0 for all v considered.

The last integral over Rd−1 decomposes into two parts: one for ‖y⊥‖ large, say, larger than R, where the inner
integral is dominated by 2ε0

‖y⊥‖d−1+ε and integration with respect to dy⊥ = ρd−2dρ dΩ with ρ = ‖y⊥‖ yields an

answer dominated by 2ε0ωd−1
εRε (which can be made arbitrarily small by letting R tend to infinity); while the other

part is over the compact set C = {y⊥ : ‖y⊥‖ ≤ R} where uniform continuity of ∂v
∂y1

(−b,y⊥) guarantees that
for h sufficiently close to 0 the integrand and the integral over C are arbitrarily small. Thus the entire integral
tends to 0 as h does, to complete the argument.

The even case. The representation in (8.4) derives from Theorem 4.2. In a rectangular coordinate sys-
tem in which y1 = y · e, just as in the odd case, by dropping terms that have partial derivatives with respect
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to variables other than y1, we arrive at the following equations, with De = ∂
∂y1

and p.v.
∫
Rd φ(y) dy :=

limδ−→0

∫
{y : |y1+b|≥δ} φ(y) dy:

wf (e, b)
ad

=
∫
Rd

(
∂

∂y1

)d+2

f(y)α(y1 + b) dy
(i)
=
∫
Rd

(
∂

∂y1

)d+1

f(y) log |y1 + b| dy

(ii)
= −p.v.

∫
Rd

(
∂

∂y1

)d

f(y)
1

y1 + b
dy

(iii)
= −

(
∂

∂a

)d (
p.v.

∫
Rd

f(y)
y1 + a

dy
)∣∣∣∣∣

a=b

.

The left side of (i) gives (8.5). So if we establish (i), (ii), and (iii), then (8.6), (8.7), and (8.10) follow.
An integration by parts with respect to the variable y1 yields (i). As the function log |y1 + b| = −α′(y1 + b)

has a singularity at y1 = −b, Lebesgue integration is required.
Another integration by parts leads to (ii). Indeed, for δ > 0

∫
{y : |y1+b|≥δ}

(
∂

∂y1

)d+1

f(y) log |y1 + b|dy

= −
∫
Rd−1

(
∂

∂y1

)d

f(−b+ δ,y⊥) log δ dy⊥ −
∫
{y : y1+b≥δ}

(
∂

∂y1

)d

f(y)
1

y1 + b
dy

+
∫
Rd−1

(
∂

∂y1

)d

f(−b− δ,y⊥) log δ dy⊥ −
∫
{y : y1+b≤−δ}

(
∂

∂y1

)d

f(y)
1

y1 + b
dy

= δ log δ

(
−
∫
Rd−1

∫ 1

t=−1

(
∂

∂y1

)d+1

f(−b+ tδ,y⊥) dt dy⊥
)

−
∫
{y : |y1+b|≥δ}

(
∂

∂y1

)d

f(y)
1

y1 + b
dy.

The coefficient of δ log δ is a well-defined finite integral, and as δ tends to 0+, δ log δ tends to 0.
To show (iii), we must establish the following:

p.v.
∫
Rd

∂v
∂y1

y1 + b
dy = −

(
∂

∂a

)(
p.v.

∫
Rd

v(y)
y1 + a

dy
)∣∣∣∣

a=b

for all real numbers b and v =
(

∂
∂y1

)i

f for i = 0, . . . , d− 1. Consider now the differential quotient

1
h

(
p.v.

∫
Rd

v(y) dy
y1 + b + h

− p.v.
∫
Rd

v(y) dy
y1 + b

)

= p.v.

(∫
Rd

1
y1 + b

(
v(y1 − h,y⊥) − v(y)

h
+

∂v

∂y1
(y)
)
dy
)

= p.v.
∫
Rd

1
y1 + b

H(y, h) dy

=
∫
{y∈Rd : |y1+h|≥1}

1
y1 + b

H(y, h) dy + p.v.
∫
{y∈Rd : |y1+b|<1}

1
y1 + b

H(y, h) dy

=: I1(h) + I2(h),

where

H(y, h) :=
∫ 1

s=0

(
∂v

∂y1
(y) − ∂v

∂y1
(y1 − sh,y⊥)

)
ds.
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It suffices to show that I1(h) and I2(h) tend to 0 as h does.
Since f is of controlled decay and we may now assume (8.8) holds, then

lim
‖y‖−→∞

(
∂

∂y1

)j

v(y)‖y‖d−1+ε = 0

for j = 0, 1, 2.
Consider I1(h). In the subregion where |y1 + b| ≥ 1 and ‖y‖ ≥ R, R suitably large, the integrand

1
y1+bH(y, h) is dominated by 2ε0

|u|(u2+ρ2)(d−1+ε)/2 where we write u = y1 + b and ρ = ‖y⊥‖. Integrating
over the subregion, we find that the integral is dominated by∫

{(u,y⊥) : |u|≥1,u2+‖y⊥‖2≥R2}

2ε0
|u|(u2 + ρ2)(d−1+ε)/2

ρd−2 dρ dΩ du

≤ 4ε0ωd−1

(∫ ∞

1

du

u1+ε

)(∫ π/2

0

tand−2 θ sec2 θdθ

secd−1+ε θ

)

≤ 4ε0ωd−1

ε
max

( π
2ε
,
π

2

)
,

where the substitution ρ = u tan θ has been used as well as the inequality cos1−ε θ ≥ (1 − 2
π θ)

1−ε when ε ≤ 1
and 0 ≤ θ ≤ π

2 . Since ε0 can be taken arbitrarily small for R sufficiently large, this term can be made as small as
we like. In the remaining subregion, where |y1 + b| ≥ 1 and ‖y‖ ≤ R, we have

|H(y, h)|
|y1 + b| ≤ |H(y, h)|

and the results of its integration can be made arbitrarily small by taking h sufficiently close to 0 because of
uniform continuity of ∂v

∂y1
on a compact set. So I1(h) tends to 0 with h.

As for I2(h), setting

G(y, h) :=
∫ 1

s=0

∫ 1

t=0

(
∂2v

∂y2
1

(−b+ t(y1 + b),y⊥) − ∂2v

∂y2
1

(−b− sh+ t(y1 + b),y⊥)
)
dt ds,

we have

I2(h) = p.v.
∫
{y:|y1+b|≤1}

H(y, h)
y1 + b

dy

=
∫
{y:|y1+b|≤1}

G(y, h) dy + p.v.
∫
{y:|y1+b|≤1}

H((−b,y⊥), h)
y1 + b

dy.

The principal value integration yields 0 since the order of integration can be changed, and the integral becomes a
product of two integrals:

p.v.
∫
{y:|y1+b|≤1}

H((−b,y⊥), h)
y1 + b

dy

=
(∫

Rd−1
H((−b,y⊥), h) dy⊥

)
·
(

p.v.
∫
{y1 : |y1+b|≤1}

1
y1 + b

dy1)

)

= 0,

where the first factor is well-defined and the second is 0. It remains for us to show that the integral∫
{y:|y1+b|≤1}

G(y, h) dy

tends to zero as h does.
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For ‖y‖ ≥ R, R suitably large, the integrand is dominated by 2
(u2+ρ2)(d−1+ε)/2 and the integral is dominated

by: ∫
{(u,y⊥) : |u|≤1,u2+‖y⊥‖2≥R2}

2
(ρ2)(d−1+ε)/2

ρd−2 dρ dΩ du

≤ 4ωd−1

(∫ 1

0+

du

)(∫ ∞

R

dρ

ρ1+ε

)

=
4ωd−1

εRε
.

For R sufficiently large this integral is accordingly negligible. Finally, in the remaining compact subregion
{y : |y1 + b| ≤ 1, ‖y‖ ≤ R} the integrand G(y, h) can be made as small as we like by choosing h sufficiently
close to 0 since ∂2v

∂y2
1

is uniformly continuous there. Accordingly its integral over that region tends to 0 with h, to
complete the proof.

The argument in the odd-dimensional case can be thought of as a variant of the Divergence Theorem [3, p. 423]
in d dimensions, in which an integral on the half-spaceH−

e,b is replaced by an integral on the bounding hyperplane
He,b.

Note that the extra condition needed for (8.9) and (8.10) is more stringent than the one in Theorem 4.2 when
|α| ≤ d− 2. For (8.3) we can require one less order of differentiability on f than in the Representation Theorem
(but at the same time we require that the highest order derivatives vanish to one higher power of ‖x‖ at ∞).

Let d be odd. We call a function f of weakly controlled decay if f : Rd −→ R is d-times continuously
differentiable and ord ∂αf ≥ 0 for all multi-indices α with 0 ≤ |α| < d, and ord ∂αf > d + 1 for all multi-
indices with |α| = d. Note that neither controlled decay nor weakly controlled decay implies the other.

Proposition 8.2 Let d be odd. If f is of weakly controlled decay, then f has the representation (4.1) with wf

given by (8.3).

P r o o f. Borrowing a technique from [19, p. 1068], we introduce a function φ on Rd that is C∞ and nonnega-
tive, vanishes for ‖x‖ ≥ 1, and has integral over Rd equal to 1. Then we define a sequence of functions fn on Rd

by fn(x) =
∫
Rd f(y)ndφ(n(x − y)) dy. Each fn is C∞, and ∂αfn(x) =

∫
Rd f(y)∂α

x (ndφ(n(x − y)) dy =∫
Rd f(y)(−1)|α|∂α

y (ndφ(n(x − y)) dy =
∫
Rd ∂

αf(y)ndφ(n(x − y)) dy, the last formula holding provided
|α| ≤ d. Since f and all of its derivatives of order ≤ d vanish at infinity, it is straightforward to show that
fn converges uniformly to f on Rd and ∂αfn likewise converges uniformly to ∂αf on Rd for |α| ≤ d. If the
functions {fn} satisfy the integral formula (4.1) with wfn as in (8.3), then f will satisfy this integral formula
with wf as in (8.3).

Indeed,

f(x) = lim
n−→∞ fn(x)

= lim
n−→∞

∫
Sd−1×R

wfn(e, b)ϑ(e · x + b) de db

= lim
n−→∞ ad

∫
Sd−1×R

∫
He,b

D(d)
e fn(y)ϑ(e · x + b) dHy de db,

=
∫

Sd−1×R
wf (e, b)ϑ(e · x + b) de db

where Lebesgue’s Dominated Convergence Theorem can be applied to move the limit all the way inside. This
follows from the fact that∣∣D(d)

e fn(y)
∣∣ =

∣∣∣∣
∫
Rd

D(d)
e f(z)ndφ(n(y − z)) dz

∣∣∣∣
≤ sup

{
C

(‖z‖2 + 1)(d+1+ε)/2
: ‖y − z‖ ≤ 1

}

≤ K

(‖y‖2 + 1)(d+1+ε)/2
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for suitable constants C and K that are independent of n and e. Since for d ≥ 3∫
Sd−1×R

∫
He,b

1
(‖y‖2 + 1)(d+1+ε)/2

ϑ(e · x + b) dHy de db

= ωd−1

∫
Sd−1×R

∫
[0,∞)

ρd−2 dρϑ(e · x + b) de db
(b2 + ρ2 + 1)(d+1+ε)/2

≤ ωd−1
π

2

∫
Sd−1×R

ϑ(e · x + b) de db
(b2 + 1)(2+ε)/2

≤ ωd−1ωd
π

2

∫ ∞

−‖x‖

db

(b2 + 1)(2+ε)/2

<∞,

the dominating function is integrable. The case d = 1 can be worked out trivially, but this exercise is superseded
by Proposition 5.1.

We must still establish that {fn} satisfies the hypotheses of the Representation Theorem. By Lemma 4.1 it
suffices to show that the order |α| = d+ 1 derivatives of fn satisfy ord ∂αfn > d+ 1. However, for |α| = d+1,
using the extra increment in the order of vanishing, we have:

|∂αfn(x)| =
∣∣∣∣
∫
Rd

f(y)∂α(φ(n(x − y))nd dy
∣∣∣∣

=
∣∣∣∣
∫
Rd

∂βf(y)
∂φ

∂ui
(n(x − y))nd+1 dy

∣∣∣∣
≤ Cn sup

{
1

(‖y‖2 + 1)(d+1+ε)/2
: ‖x − y‖ ≤ 1

}

≤ Dn

(‖x‖2 + 1)(d+1+ε)/2

where α = β + ui, ui a coordinate vector with 1 in the i-th position and 0 elsewhere for some i such that
αi ≥ 1.

Proposition 8.2 generalizes the result of Kůrková, Kainen and Kreinovich [19]. Proposition 8.1, (8.3) and
(8.7), extends the result of Ito [13], while Proposition 8.1, (8.9) and (8.10), extends the result of Carroll and
Dickinson [4].

9 Discussion

The history of the representations above is of some interest. Helgason’s book [11] offers generalizations and
at the same time points back to antecedent ideas, including papers of Funk and Radon. Gel’fand, Graev, and
Vilenkin [9] also obtained a Radon-type representation. Indeed the history of this representation probably extends
back beyond Radon and Hilbert to such figures as Cauchy, Poisson, and Laplace.

Properties of the weight function in the integral formula can be developed further. In our present setting wf

is a continuous function on Sd−1 × R, is integrable on this set (along with (e, b) �−→ wf (e, b)θ(e · x + b))
and satisfies lim|b|−→∞wf (e, b)|b|1+ε = 0. In the proof of Theorem 4.2 we found a class of weight functions
(e, b) �−→ ŵf (e, b) + ŵf (−e,−b), each of which represents the zero function. Since wf is not unique, one can
seek choices for it that minimize various measures of cost.

It is apparent that the representation applies to functions other than those given in Theorem 4.2, and Propo-
sitions 8.1 and 8.2. Ito [13] points out that the conditions on the functions to be approximated can be loosened
considerably but does not provide details. In the one-dimensional case, Proposition 5.1 and Lemma 6.1 both
demonstrate that the growth conditions can be weakened, or even abandoned. In the proof of the Representation
Theorem use was made of representations of ‖x‖ and β(‖x‖) by integral combinations of Heavisides. Similar
representations can be made for any polynomial x �−→ p(‖x− y‖).
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Also of interest is how a finite sum approximating the integral formulas can be selected (choices of weights and
half-spaces). “A quadrature formula is a numerical rule whereby the value of a definite integral is approximated
by the use of information about the integrand only at discrete points (where the integrand is defined)” (Engels, [7,
p. 1]). A quadrature of the integral formula from Theorem 4.2 would determine parameters of a Heaviside
perceptron network that should be useful information for designing a learning algorithm. Elsewhere we have
shown that for every n ≥ 1, integrable functions f on [0, 1]d have best approximations by combinations of n or
fewer Heavisides ( [17], [14]), but these best approximations cannot vary continuously with f ( [18], [15]).

Perhaps quadrature can be achieved by an algorithm which first chooses among distinct alternatives and then
proceeds continuously.
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