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Formulation of the problem

Given a nonsingular matrix A and vectors b and c.

We want to approximate

c∗A−1b .

Equivalently, we look for an approximation to

c∗x such that Ax = b .
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Motivation

Approximation of the jth component of the solution

i.e., we want to approximate eTj A−1b.

Signal processing (the scattering amplitude)

b and c represent incoming and outgoing waves, respectively,
and the operator A relates the incoming and scattered fields
on the surface of an object,

Ax = b determines the field x from the signal b. The signal is
received on an antenna c. The signal received by the antenna
is then c∗x. The value c∗x is called the scattering amplitude.

Optimization (the primal linear output)

Nuclear physics, quantum mechanics, other disciplines
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Krylov subspace methods approach
Projection of the original problem onto Krylov subspaces

Kn(A, b) = span{b,Ab, . . .An−1b} .

A possible approach: Compute xn using a Krylov subspace method,

c∗A−1b = c∗x ≈ c∗xn .

The approximation c∗xn can be highly inefficient!
How to approximate c∗x without looking for xn?

We need a theoretical background
(find the best possible approximation in some sense).

Efficient numerical computation and justification
of the approximation in finite precision arithmetic.
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The CG method
Let A be symmetric, positive definite

Solve Ax = b .

input A, b

x0 = 0
r0 = p0 = b

for k = 0, 1, . . .

αk = ‖rk‖2
p∗
k

Apk
,

xk+1 = xk + αk pk ,
rk+1 = rk − αkApk ,

βk+1 =
‖rk+1‖2
‖rk‖2 ,

pk+1 = rk+1 + βk+1 pk ,

end
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The Lanczos algorithm
Let A be symmetric

Compute orthonormal basis of Kn(A, b).
input A, b

v1 = b/‖b||, δ1 = 0 ,

for k = 1, 2, . . .

γk = vTk (Avk − δkvk−1) ,

w = Avk − γkvk − δkvk−1 ,
δk+1 = ‖w‖ ,

vk+1 = w/δk+1 ,

end

The Lanczos algorithm is represented by

AVn = VnTn + δn+1vn+1e
T
n ,

where V∗nVn = I and Tn = V∗nAVn is tridiagonal.
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CG versus Lanczos
Let A be symmetric, positive definite

Tn =




γ1 δ2

δ2
. . .

. . . δn
δn γn




= Ln LTn

where

Ln =




1√
α0√
β1

α0

. . .

. . .
. . .√
βn−1

αn−2

1√
αn−1



.

The CG approximation is the given by

Tnyn = ‖b‖e1, xn = x0 + Vnyn .
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Distribution function ω(λ)
Without loss of generality ‖b‖ = 1

(λi, ui) . . . eigenpair of A, ωi = (bTui)
2.

...

0

1

ω1

ω2

ω3

ω4

ωN

ζ λ1 λ2 λ3
. . . . . . λN ξ

∫ ξ

ζ
f(λ) dω(λ) =

N∑

i=1

ωi f(λi) .
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The Conjugate gradient method and Gauss Quadrature
Symmetric, positive definite case

At any iteration step n, CG (implicitly) determines weights and
nodes of the n-point Gauss quadrature

∫ ξ

ζ
f(λ) dω(λ) =

n∑

i=1

ω
(n)
i f(θ

(n)
i ) + Rn(f) .

Tn . . . the corresponding Jacobi matrices,

θ
(n)
i . . . eigenvalues of Tn, ω

(n)
i . . . scaled and squared first

components of the normalized eigenvectors of Tn.

Behind CG is Gauss Quadrature

CG can be seen as a procedure for computing Gauss
Quadrature nodes and weights.
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CG and Gauss Quadrature for f(λ) = λ−1

Symmetric, positive definite case

For f(λ) ≡ λ−1 the formula takes the form

∫ ξ

ζ
λ−1 dω(λ) =

n∑

i=1

ω
(n)
i

θ
(n)
i

+ Rn(λ
−1)

or, equivalently [Golub & Strakoš ’94],

‖x‖2
A

‖b‖2 = n-th Gauss quadrature +
‖x− xn‖2A
‖b‖2 .

We can approximate

‖x‖2A = xTAx = bTx = bTA−1b

using Gauss quadrature.
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CG and Gauss Quadrature for f(λ) = λ−1

Mathematically equivalent formulas (multiplied by ‖b‖2)

Gauss Quadrature based formula:

‖x‖2A = ‖b‖2 Cn + ‖x− xn‖2A ,

Cn is continued fraction corresponding to ω(n)(λ)
[Golub & Strakoš ’94, Golub & Meurant ’94, ’97, ’10]

Formulas based on algebraic manipulations

‖x‖2A = bTxn + ‖x− xn‖2A

‖x‖2A =
n−1∑

i=0

αi‖ri‖2 + ‖x− xj‖2A.

The first one derived by [Warnick ’00], the second one independently
by [Hestenes & Stiefel ’52, Deufelhard ’93, Axelsson & Kaporin ’01, Strakoš & T. ’02]
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CG and the approximation of bTA−1b
Mathematically equivalent approximations

Approximation based on the formula

‖x‖2A = ‖b‖2 n-th Gauss quadrature + ‖x− xn‖2A .

If ‖x− xn‖2A is small then

bTA−1b ≈ ‖b‖2 n-th Gauss quadrature

Mathematically equivalent approximations:

‖b‖2 Cn, bTxn and
n−1∑

i=0

αi‖ri‖2.
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Finite precision arithmetic
CG behavior

Orthogonality is lost, convergence is delayed!
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Identities need not hold in finite precision arithmetic!
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Rounding error analysis
Strakoš & T. 2002

Do the identities hold for computed quantities?

1

‖x‖2A = bTxn + ‖x− xn‖2A

does not hold for computed quantities - its validity is based on
preserving global orthogonality among CG residuals.

2

‖x‖2A =
n−1∑

i=0

αi‖ri‖2 + ‖x− xn‖2A.

holds also for computed quantities - it is based on preserving
local orthogonality between rn+1 and pn.
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What is the error | ‖x‖2A − approx. |
in finite precision arithmetic?

Assume ‖b‖ = 1. Since bTx = xTAx = ‖x‖2
A

,

‖x‖2A − bTxn = bT (x− xn)

and it holds that

| bT (x− xn) | ≤ ‖x− xn‖ .

Due to loss of orthogonality one can expect that

| ‖x‖2A − bTxn | ∼ ‖x− xn‖ ∼ ‖x− xn‖A

while

‖x‖2A −
n−1∑

i=0

αi‖ri‖2 = ‖x− xn‖2A .
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Behavior in finite precision arithmetic

bTxn versus
n−1∑

i=0

αi‖ri‖2
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Symmetric, positive definite case, b 6= c
Conjugate gradient method and non-symmetric Lanczos

1 Use the polarization identity

cTA−1b = (c+ b)TA−1(c+ b)− (c− b)TA−1(c− b),

and approximate uTA−1u for u = c+ b and u = c− b.
2 Apply the non-symmetric Lanczos to the SPD matrix A and

approximate cTA−1b directly.
Discussed thoroughly in [Golub & Meurant ’94, ’10]

For a real matrix A, both approaches require approximately
the same number of operations. The second approach can suffer
from breakdowns.

For a complex matrix A, the polarization identity is more
complicated (it will be discussed later).
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Symmetric, positive definite case
Summary I

Theoretical background: Gauss quadrature

bTA−1b

‖b‖2 = n-th Gauss quadrature +
‖x− xn‖2A
‖b‖2 .

If c = b, the best way how to approximate bTA−1b is to use the
Hestenes-Stiefel estimate

bTA−1b ≈
n−1∑

i=0

αi‖ri‖2 .

If c 6= b, one can use the polarization identity

cTA−1b = (c+ b)TA−1(c+ b)− (c− b)TA−1(c− b) .
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Symmetric, positive definite case
Summary II

We have seen that due to numerical instabilities, the explicit
numerical computation of c∗xn can be highly inefficient.
[Strakoš & T. ’02, ’05]

If A is SPD and c = b, there are several efficient methods
(based on CG or Hermitian Lanczos)
[Golub & Meurant ’94, ’97, Axelsson & Kaporin ’01, Strakoš & T. ’02, ’05]

How to generalize ideas from the SPD case to a general case?

We need a theoretical background
(find the best possible approximation in some sense).

Efficient numerical computation and justification
of the approximation in finite precision arithmetic
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Complex Gauss Quadrature?
Saylor-Smolarski approach

Let A be diagonalizable. [Saylor & Smolarski ’01] introduce

formally orthogonal polynomials,

complex Gauss quadrature,

as a tool for approximating the quantity c∗A−1b. Motivated by
[Freund & Hochbruck ’93], [Golub & Meurant ’94, ’97].

Idea: Use BiCG or the Non-Hermitian Lanczos algorithm to
generate (implicitly) formally orthogonal polynomials.

Non-Hermitian Lanczos → T̂n (complex) symmetric. Define

c∗A−1b ≈ G
(
λ−1
)
≡

n∑

k=1

ω
(n)
k

θ
(n)
k

,

θ
(n)
k . . . eigenvalues of T̂n, ω

(n)
k . . . scaled and squared first

components of the normalized eigenvectors of T̂n.
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Moment problem
Classical formulation

Consider a non-decreasing distribution function ω(λ), λ ≥ 0 with
the moments given by the Riemann-Stieltjes integral

ξk =

∫ ∞

0
λk dω(λ) , k = 0, 1, . . . .

Find the distribution function ω(n)(λ) with n points of increase

λ
(n)
i which matches the first 2n moments for the distribution

function ω(λ) , i.e. such that for k = 0, 1, . . . , 2n − 1

ξk =

∫ ∞

0
λk dω(n)(λ) ≡

n∑

i=1

ω
(n)
i (λ

(n)
i )k .
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Moment problem
and Gauss-Christoffel quadrature

Clearly,

∫ ∞

0
λk dω(λ) =

n∑

i=1

ω
(n)
i (λ

(n)
i )k, k = 0, 1, . . . , 2n− 1

represents the n-point Gauss-Christoffel quadrature, see

C. F. Gauss, [Methodus nova integralium valores per approximationem

inveniendi, 1814],

C. G. J. Jacobi, [Über Gauss neue Methode, die Werthe der Integrale

näherungsweise zu finden, 1826],

and the description given in H. H. J. Goldstine, [A History of

Numerical Analysis from the 16th through the 19th Century, 1977].

With no loss of generality we assume ξ0 = 1.
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Model reduction via matching moments
Gauss-Christoffel quadrature formulation

∫ ∞

0
f(λ) dω(λ) ≈

n∑

i=1

ω
(n)
i f(λ

(n)
i ) ,

where the reduced model given by the distribution function with n
points of increase ω(n) matches the first 2n moments

∫ ∞

0
λk dω(λ) =

n∑

i=1

ω
(n)
i (λ

(n)
i )k , k = 0, 1, . . . , 2n − 1 .
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CG, Gauss Quadrature and Matching Moments
Overview

CG, Lanczos,
Jacobi matrices

Moment problem
matching moments

Gauss Quadrature
nodes, weights
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Matching moments
Matrix formulation, without loss of generality ‖b‖ = 1

How to express moments in terms of A, b and Tn?

∫ ∞

0
λk dω(λ) =

N∑

i=1

ωj (λj)
k = b∗Ak b ,

∫ ∞

0
λk dω(n)(λ) =

n∑

i=1

ω
(n)
i (θ

(n)
i )k = eT1 Tkn e1 .

Matching the first 2n moments therefore means

b∗Ak b ≡ eT1 Tkn e1 , k = 0, 1, . . . , 2n− 1 .
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Model reduction via matching moments
Another view of the CG and Lanczos algorithms

Let ‖b‖ = 1.

CG (Lanczos) reduces for A HPD at the step n the original model

Ax = b to Tnyn = e1

such that 2n moments are matched,

b∗Akb = eT1 Tkne1, k = 0, 1, . . . , 2n − 1 .
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The Vorobyev moment problem
Vorobyev ’58, ’65, popularized by Brezinski ’97, Strakoš ’08

Find a linear HPD operator An on Kn(A, v) such that

An v = A v,

A2
n v = A2 v,

...

An−1
n v = An−1 v,

Ann v = QnA
n v ,

where Qn projects onto Kn(A, b) orthogonally to Kn(A, b).
Moment problem:

ω(λ) → ω(n)(λ) .

Vorobyev moment problem:

A, v → An, v .
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Lanczos and the Vorobyev moment problem
Model reduction via matching moments

Let Vn and Tn are matrices from the Lanczos algorithm. Then

Qn = VnV
∗
n ,

An = VnTnV
∗
n.

We can identify Lanczos with the Vorobyev moment problem.

Using the Vorobyev moment problem one can show [Strakoš ’08]

b∗Akb = b∗Aknb = e∗1Tkne1, k = 0, . . . , 2n − 1 .

The matching moment property of Lanczos (CG) can be shown
without using Gauss Quadrature!

This view of Krylov subspace methods appears to be useful when
generalizing the ideas from the HPD case.
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Vorobyev moment problem
General case

Find a linear operator An on Kn(A, v) such that

An v = A v,

A2
n v = A2 v,

...

An−1
n v = An−1 v,

Ann v = QnA
n v ,

where Qn is a given linear projection operator.

Some Krylov subspace methods can be identified
with the Vorobyev moment problem.

Useful formulation for understanding approximation properties
of Krylov subspace methods.
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Non-Hermitian Lanczos

Given a nonsingular A, v and w.

Non-Hermitian Lanczos algorithm is represented by

AVn = VnTn + δn+1vn+1e
T
n ,

A∗Wn = WnT
∗
n + η∗n+1wn+1e

T
n ,

where W∗
nVn = I and Tn = W∗

nAVn is tridiagonal,

Tn =




γ1 η2

δ2 γ2
. . .

. . .
. . . ηn
δn γn



.
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Arnoldi algorithm

Given a nonsingular A and v.

Arnoldi algorithm is represented by

AVn = VnHn + hn+1,nvn+1e
T
n ,

where V∗nVn = I, and Hn =V∗nAVn is upper Hessenberg,

Hn =




h1,1 h1,2 . . . h1,n

h2,1 h2,2
. . .

...
. . .

. . . hn−n,n
hn,n−1 hn.n



.
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Non-Hermitian Lanczos
Vorobyev moment problem, matching moments, model reduction

Define Qn: it projects onto Kn(A, v) orthogonally to Kn(A∗, w).

Then

Qn = VnW
∗
n ,

An = VnTnW
∗
n .

Matching moments property of Non-Hermitian Lanczos:
[Gragg & Lindquist ’83, Villemagne & Skelton ’87]

[Gallivan & Grimme & Van Dooren ’94, Antoulas ’05]

[a simple proof using the Vorobyev moment problem - Strakoš ’08]

w∗Akv = w∗Aknv = e∗1Tkne1, k = 0, . . . , 2n − 1 .

Model reduction

A, v, w → Tn, e1, e1 .
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Arnoldi algorithm
Vorobyev moment problem, matching moments, model reduction

Define Qn: it projects onto Kn(A, v) orthogonally to Kn(A, v).

Then

Qn = VnV
∗
n ,

An = VnHnV
∗
n .

Matching moments property of Arnoldi:

w∗Akv = w∗Aknv = t∗nH
k
ne1, k = 0, . . . , n− 1 ,

w is given, tn = V∗nw.

Model reduction

A, v, w → Hn, e1, tn .
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Approximation of c∗A−1b
Theoretical background - general framework, Strakoš & T. ’09

Vorobyev moment problem: A → An

Define approximation:

c∗A−1b ≈ c∗A−1
n b

A−1
n is the matrix representation of the inverse of the reduced

order operator An which is restricted onto Kn(A, b),

A−1
n = VnT

−1
n W∗

n in Non-Hermitian Lanczos,

A−1
n = VnH

−1
n V∗n in Arnoldi.

Questions:

How to compute c∗A−1
n b efficiently?

Relationship to the existing approximations?

We concentrate only to non-Hermitian Lanczos approach.
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Non-Hermitian Lanczos approach

Define

v1 =
b

‖b‖ , w1 =
c

c∗v1
, i.e. w∗1v1 = 1 .

Then

c∗A−1
n b = c∗VnT

−1
n W∗

nb = (c∗v1) ‖b‖ (T−1
n )1,1 .

Let x0 = 0. We also know that xn = ‖b‖VnT−1
n e1 is the

approximate solution computed via BiCG. Therefore,

c∗A−1
n b = c∗‖b‖VnT−1

n W∗
nVne1 = c∗xn .

BiCG can be used for computing c∗A−1
n b !

We used the global biorthogonality !
Do the identities hold in finite precision computations?
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The BiCG method

Simultaneous solving of

Ax = b , A∗y = c .

input A, b, c

x0 = y0 = 0
r0 = p0 = b, s0 = q0 = c

for n = 0, 1, . . .

αn = s∗nrn
q∗nApn

,

xn+1 = xn + αn pn , yn+1 = yn + αn
∗ qn ,

rn+1 = rn − αnApn , sn+1 = sn − α∗nA∗qn ,

βn+1 =
s∗
n+1
rn+1

s∗nrn
,

pn+1 = rn+1 + βn+1 pn , qn+1 = sn+1 + β∗n+1 qn

end
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An efficient approximation based on the BiCG method
How to compute c∗A−1

n b in BiCG without using the global biorthogonality?

Using local biorthogonality we can show that

s∗jA
−1rj − s∗j+1A−1rj+1 = αjs

∗
jrj .

Consequently,

c∗A−1b =
n−1∑

j=0

αjs
∗
jrj + s∗nA

−1rn .

Moreover, it can be shown (using global biorthogonality) that

c∗A−1b = c∗xn + s∗nA
−1rn .

Finally,

c∗A−1
n b = (c∗v1) ‖b‖ (T−1

n )1,1 = c∗xn =
n−1∑

j=0

αjs
∗
jrj .
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Complex Gauss Quadrature
Saylor-Smolarski approach

Let A be diagonalizable.

Non-Hermitian Lanczos → T̂n (complex) symmetric. Define

c∗A−1b ≈ G
(
λ−1
)
≡

n∑

k=1

ωk
θk
,

θk . . . eigenvalues of T̂n, ωk . . . scaled and squared first
components of the normalized eigenvectors of T̂n.

[Warnick ’00] showed:

G
(
λ−1
)

= c∗xn

where xn is the nth BiCG approximation. Therefore,

c∗A−1
n b = c∗xn = G

(
λ−1
)
.
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Yet another approach
Hybrid BiCG methods

We know that

c∗A−1
n b =

n−1∑

j=0

αj s
∗
jrj and s∗jrj = (c∗b)

j−1∏

k=0

βk .

In hybrid BiCG methods like CGS, BiCGStab, BiCGStab(ℓ),
the BiCG coefficients are available, i.e. we can compute the
approximation c∗A−1

n b during the run of these method.

Question: Hybrid BiCG methods produce approximations xn,
better than xn produced by BiCG.

Is c∗xn a better approximation of c∗A−1b than c∗xn?

No. We showed that mathematically [Strakoš & T. ’09],

c∗xn = c∗xn.
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Summary (non-Hermitian Lanczos approach)
How to compute c∗A−1

n b?

Algorithm of choice:

non-Hermitian Lanczos

BiCG

hybrid BiCG methods

Way of computing the approximation:

c∗xn

(c∗v1) ‖b‖ (T−1
n )1,1

complex Gauss quadrature

from the BiCG coefficients, or, in BiCG using

εBn ≡
n−1∑

j=0

αj s
∗
jrj .
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Preconditioning
General case

Let PL and PR be a left and a right preconditioner. Then

c∗A−1b = ( P−∗
R
c︸ ︷︷ ︸
ĉ

)∗ ( P−1
L

AP−1
R

)−1

︸ ︷︷ ︸
Â−1

( P−1
L
b︸ ︷︷ ︸
b̂

) .

The approximation techniques can be applied to the problem

ĉ∗Â−1b̂ .

It is obvious that Â need not be formed explicitly.

It is easier to derive the preconditioned algorithm
for approximating the scattering amplitude than
the preconditioned algorithm for solving linear systems.
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Transformation to the Hermitian positive definite case
Basic ideas

c∗A−1b = c∗A∗(AA∗)−1b = c∗(A∗A)−1A∗b ,

c̃ ≡ Ac and approximate c̃∗(AA∗)−1b ,

b̃ ≡ A∗b and approximate c∗(A∗A)−1b̃ .

Approximate
u∗B−1v ,

where B is Hermitian and positive definite.

1 Using the polarization identity,

2 BiCG applied to the Hermitian problem,

3 GLSQR approach (Block-Lanczos approach).
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Transformation to the Hermitian positive definite case
Using the polarization identity

〈v, u〉 =
1

2

(
‖v + u‖2 − (1 + i)(‖v‖2 + ‖u‖2) + i‖v + iu‖2

)
.

Considering 〈v, u〉 ≡ u∗B−1v, the approximation of u∗B−1v
requires approximation of four terms

u∗B−1u , (v+u)∗B−1(v+u) , (v+ iu)∗B−1(v+ iu) , v∗B−1v .

One term is always known,

If B = AA∗, u = Ac, v = b, then u∗B−1u = ‖c‖2.

If B = A∗A, u = c, v = A∗b, then v∗B−1v = ‖b‖2.

Methods:

Use CGNE, CGNR of LSQR.

The price: six matrix-vector multiplications
(three with A and three with A∗) per one iteration step.
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Transformation to the Hermitian positive definite case
GLSQR approach - closely connected to Golub-Kahan bi-diagonalization

Apply the block-Lanczos algorithm to the matrix A∗A with the
starting block [c,A∗b] or, equivalently, to the augmented matrix

[
0 A

A∗ 0

]
with the starting block

[
u1 0
0 v1

]
,

where u1 = b/‖b‖, v1 = c/‖c‖.
[Golub & Stoll & Wathen ’08], [Saunders & Simon & Yip ’88]

The GLSQR method uses the following recurrences

AVn = UnTn + ξn+1un+1e
T
n ,

A∗Un = VnT
∗
n + θn+1vn+1e

T
n ,

where Vn and Un are matrices with orthonormal columns, Tn is
tridiagonal. Approximate c∗A−1b using block Gauss quadrature,

c∗A−1b by ‖c‖‖b‖ eT1 T−1
n e1 .
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General case
Summary I

Theoretical background: Model reduction via matching moments .

Several Krylov subspace methods (Lanczos, Arnoldi) can be
identified with the Vorobyev moment problem A → An .

Approximation:
c∗A−1b ≈ c∗A−1

n b .

Promising approaches:

BiCG and c∗A−1b ≈
n−1∑

j=0

αjs
∗
jrj ,

Arnoldi and c∗A−1b ≈ ‖b‖ t∗nH−1
n e1 ,

where tn = V∗nc.
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General case – transformation to the HPD case
Summary II

Disadvantage: One can expect slower convergence.

Theoretical background: (block) Gauss quadrature .

Approach based on polarization identity and a CG-like method for
normal equations requires six matrix-vector products per iteration.

The most promising approach: GLSQR

based on block Gauss Quadrature,

only two matrix-vector products per iteration,

approximate c∗A−1b by

‖c‖‖b‖ eT1 T−1
n e1 ,

where Tn is tridiagonal.
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Numerical experiments
Diffraction of light on periodic structures, RCWA method

[Hench & Strakoš ’08]

Ax ≡




−I I ei
√

C̺ 0

YI
√

C −
√

Cei
√
C̺ 0

0 ei
√

C̺ I −I

0
√

Cei
√

C̺ −
√

C −YII



x = b ,

YI, YII,C ∈ C(2M+1)×(2M+1), ̺ > 0, M is the discretization
parameter representing the number of Fourier nodes used for
approximation of the electric and magnetic fields as well as the
material properties.

Typically, one needs only the dominant (M + 1)st component

e∗M+1A−1b.

In our experiments M = 20, i.e. A ∈ C164×164. [Strakoš & T. ’09]
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The matrix A

Spectrum of A computed via the Matlab command eig
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Some eigenvalues have large imaginary parts
in comparison to the real parts, κ(A) ≈ 104.
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Non-Hermitian Lanczos approach
Mathematically equivalent estimates I
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Comparison of mathematically equivalent approximations
based on BiCG and non-Hermitian Lanczos.
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Non-Hermitian Lanczos approach
Mathematically equivalent estimates II
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The BiCGStab and CGS approximations are significantly more
affected by rounding errors than the BiCG approximations.
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Non-Hermitian Lanczos, Arnoldi, GLSQR
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GLSQR: [Golub & Stoll & Wathen ’08], [Saunders & Simon & Yip ’88]
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Different approaches with preconditioning
Non-Hermitian Lanczos, Arnoldi, GLSQR
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Conclusions

Some Krylov subspace methods can be seen as model
reduction via matching moments.

Generalization of the HPD case:
Via Vorobyev moment problem → very natural and general.
- no assumptions on A, based on approximation properties
Complex Gauss Quadrature approach
- A has to be diagonalizable, just a formalism

We proved mathematical equivalence of the existing
approximations based on Non-Hermitian Lanczos.

Preferable approximation

εBn ≡
n−1∑

j=0

αj s
∗
jrj .

It is simple and numerically better justified.

In finite precision arithmetic, the identities need not hold.
A justification is necessary (e.g. local biorthogonality).
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More details

More details can be found at

http://www.cs.cas.cz/strakos

http://www.cs.cas.cz/tichy

Thank you for your attention!
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