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A system of linear algebraic equations

Consider a system of linear algebraic equations

Ax = b

A ∈ R
n×n is nonsingular and normal, b ∈ R

n.

● How to construct an approximation to the solution?
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A system of linear algebraic equations

Consider a system of linear algebraic equations

Ax = b

A ∈ R
n×n is nonsingular and normal, b ∈ R

n.

● How to construct an approximation to the solution?

Krylov subspace methods 7→ Given x0 ∈ R
n, r0 = b − Ax0. Find xi,

xi ∈ x0 + Ki(A, r0) such that ri ⊥ Ci,

where ri = b − Axi, Ki(A, r0) ≡ span {r0, · · · ,Ai−1r0}.
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OR and MR Krylov subspace methods

Let x0 = 0, i.e. r0 = b − Ax0 = b (for simplicity).

Orthogonal Residual (OR) and Minimal Residual (MR) approach

(OR) Find xi ∈ Ki(A, b) such that ri ⊥ Ki(A, b).

(MR) Find xi ∈ Ki(A, b) such that ri ⊥ AKi(A, b).
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OR and MR Krylov subspace methods

Let x0 = 0, i.e. r0 = b − Ax0 = b (for simplicity).

Orthogonal Residual (OR) and Minimal Residual (MR) approach

(OR) Find xi ∈ Ki(A, b) such that ri ⊥ Ki(A, b).

(MR) Find xi ∈ Ki(A, b) such that ri ⊥ AKi(A, b).

Optimality properties

(OR) ‖ei‖A = min
p∈πi

‖p(A)x‖A (if A is SPD) ,

(MR) ‖ri‖ = min
p∈πi

‖p(A)b‖,

where ei ≡ x − xi, πi ≡ { p is a polynomial; deg(p) ≤ i; p(0) = 1} .
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The problem of convergence

MR constructs approximations xi ∈ Ki(A, b) to the solution x of the
system Ax = b such that

‖ri‖ = min
p∈πi

‖p(A) b‖ .

● Our aim:
Description and understanding of this minimization process.

● Considered classes of matrices in this talk:

Normal matrices, symmetric and positive definite matrices,
symmetric positive definite tridiagonal Toeplitz matrices.

● We denote the OR method for SPD matrices as the CG method (Conjugate
Gradient).
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Outline

1. Introduction

2. Convergence bounds

3. Formulas for the next-to-last CG and MR iteration step

4. Application to symmetric tridiagonal Toeplitz matrices

5. Model problem: 1D Poisson equation

6. Conclusions
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Convergence of the MR method

Let A be normal, L ≡ {λ1, . . . , λn}, ‖b‖ = 1. Then

‖ri‖ = min
p∈πi

‖p(A)b‖
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Convergence of the MR method

Let A be normal, L ≡ {λ1, . . . , λn}, ‖b‖ = 1. Then

‖ri‖ = min
p∈πi

‖p(A)b‖

≤ max
‖b‖=1

min
p∈πi

‖p(A)b‖ (worst-case)

= min
p∈πi

‖p(A)‖

= min
p∈πi

max
λj∈L

|p(λj)|
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Convergence of the MR method

Let A be normal, L ≡ {λ1, . . . , λn}, ‖b‖ = 1. Then

‖ri‖ = min
p∈πi

‖p(A)b‖

≤ max
‖b‖=1

min
p∈πi

‖p(A)b‖ (worst-case)

= min
p∈πi

‖p(A)‖

= min
p∈πi

max
λj∈L

|p(λj)|

● In this sense we understand the MR-CG worst-case behaviour.

● How to describe ‖ri‖ or the worst-case bound in terms of input data?
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General formula for the MR residual

Krylov matrix
Ki+1 ≡ [b,Ab, . . . ,Aib] .

Residual ri can be written as ( Assumption: Ki+1 has full column rank )

ri = ‖ri‖2 (K+
i+1)

H e1 ⇒ ‖ri‖ =
1

‖(K+
i+1)

H e1‖
.

[Ipsen ’00, Liesen & Rozložník & Strakoš ’02]
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General formula for the MR residual

Krylov matrix
Ki+1 ≡ [b,Ab, . . . ,Aib] .

Residual ri can be written as ( Assumption: Ki+1 has full column rank )

ri = ‖ri‖2 (K+
i+1)

H e1 ⇒ ‖ri‖ =
1

‖(K+
i+1)

H e1‖
.

[Ipsen ’00, Liesen & Rozložník & Strakoš ’02]

We consider A and b in the form

A = QΛQH , b = Q [̺1, . . . , ̺n]T .

We will assume that all eigenvalues of A are distinct .
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The next-to-last MR iteration step

Let ̺j 6= 0 for all j. Then

‖rn−1‖ =





n∑

j=1

∣
∣
∣
∣

lj
̺j

∣
∣
∣
∣

2




−1/2

, lj ≡
n∏

k=1

k 6=j

λk

λk − λj
.

[Liesen & T. ’04, Ipsen ’00]
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The next-to-last MR iteration step

Let ̺j 6= 0 for all j. Then

‖rn−1‖ =





n∑

j=1

∣
∣
∣
∣

lj
̺j

∣
∣
∣
∣

2




−1/2

, lj ≡
n∏

k=1

k 6=j

λk

λk − λj
.

[Liesen & T. ’04, Ipsen ’00]

Using Cauchy’s inequality,

‖rw

n−1‖
‖bw

MR
‖ =





n∑

j=1

|lj |





−1

,

where

bw

MR
= Q [̺w

1 , . . . , ̺w

n]T , |̺w

k |2 = γ |lk|, k = 1, . . . , n ,

γ > 0 is any scaling factor. [Liesen & T. ’04]
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The next-to-last CG iteration step

CG can be seen as MR for a special right hand side b̃,

min
p∈πi

‖p(A)x‖A = min
p∈πi

‖p(A)A1/2x‖ = min
p∈πi

‖p(A)b̃‖ .
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The next-to-last CG iteration step

CG can be seen as MR for a special right hand side b̃,

min
p∈πi

‖p(A)x‖A = min
p∈πi

‖p(A)A1/2x‖ = min
p∈πi

‖p(A)b̃‖ .

Then

‖en−1‖A =





n∑

j=1

∣
∣
∣
∣
∣

λ
1/2
j lj

̺j

∣
∣
∣
∣
∣

2




−1/2

,
‖ew

n−1‖A
‖xw

CG
‖A

=





n∑

j=1

|lj |





−1

,

bw

CG
= Q [̺w

1 , . . . , ̺w

n]T , |̺w

k |2 = γ |λk lk|, k = 1, . . . , n ,

γ > 0 is any scaling factor.
[Liesen & T. ’05]
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Summary (the next-to-last iteration step)

The next-to-last step of CG and MR is completely understood!

We know

● the convergence quantities,

● the worst-case convergence quantities and corresponding bw.
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Summary (the next-to-last iteration step)

The next-to-last step of CG and MR is completely understood!

We know

● the convergence quantities,

● the worst-case convergence quantities and corresponding bw.

How to use this information?

● We can study the influence of the right hand side,

● we can compare the worst-case bound with classical bounds,

● we can determine right hand sides leading to the slowest convergence
and identify the worst input data of our original problem.
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Symmetric tridiagonal Toeplitz matrices

Consider linear algebraic systems Ax = b , where

A =










α β

β
. . .

. . .
. . .

. . . β

β α










∈ R
n×n.

Let α and β be such that A is symmetric and positive definite matrix.
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Symmetric tridiagonal Toeplitz matrices

Consider linear algebraic systems Ax = b , where

A =










α β

β
. . .

. . .
. . .

. . . β

β α










∈ R
n×n.

Let α and β be such that A is symmetric and positive definite matrix.

Eigenvalues and eigenvectors of A are known

λk = α + 2 β cos(kπh) ,

qk = (2h)1/2 [sin (kπh) , sin (2kπh) , . . . , sin (nkπh)]T ,

where h ≡ (n + 1)−1.



P. Tichý and J. Liesen 12

Worst-case bound versus classical κ-bound

Now we are able to determine lj and the worst-case bound

‖ew

n−1‖A

‖ew

0 ‖A
=





n∑

j=1

|lj |





−1

≈ 2 νn−1

1 + ν2 + · · · + ν2(n−1) + ν2n
,

where

ν ≡
√

κ − 1√
κ + 1

, κ =
λmax

λmin
.
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Worst-case bound versus classical κ-bound

Now we are able to determine lj and the worst-case bound

‖ew

n−1‖A

‖ew

0 ‖A
=





n∑

j=1

|lj |





−1

≈ 2 νn−1

1 + ν2 + · · · + ν2(n−1) + ν2n
,

where

ν ≡
√

κ − 1√
κ + 1

, κ =
λmax

λmin
.

The classical κ-bound is given by

‖ew

n−1‖A

‖ew

0 ‖A
≤ 2νn−1

1 + ν2(n−1)
≤ 2νn−1.
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Model problem: Poisson equation

−u′′(z) = f(z), z ∈ (0, 1) , u(0) = u0, u(1) = u1 .

The central finite difference approximation on the uniform grid kh,
k = 1, . . . , n, h = 1/(n + 1), leads to a system Ax = b

A
︷ ︸︸ ︷









2 −1

−1
. . .

. . .
. . .

. . . −1

−1 2










x =

b
︷ ︸︸ ︷

h2










f(h)
...
...

f(nh)










+










u0

u1










.

The eigenvalues λk and the eigenvectors qk of A are known,

λk = 4 sin2

(
kπh

2

)

⇒ lj = 2 cos2
(

jπh

2

)

.

[Liesen & T. ’05]
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Various right hand sides

Formulas for the next-to-last step

‖rn−1‖ =





n∑

j=1

∣
∣
∣
∣

lj
̺j

∣
∣
∣
∣

2




−1/2

, ‖en−1‖A =





n∑

j=1

∣
∣
∣
∣
∣

λ
1/2
j lj

̺j

∣
∣
∣
∣
∣

2




−1/2

.

We consider two types of right hand sides:

● worst-case b’s: right hand sides leading to maximal relative
convergence quantities in the next-to-last step → bw

MR, bw
CG.

● unbiased b → bu, all ̺j are of equal size.
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Some results for MR

Let ‖bw
MR‖ = ‖bu‖ = 1. [Liesen & T. ’05]

Worst-case × unbiased case (MR)

‖rw

n−1‖ =
1

n
, ‖ru

n−1‖ >

√

2

3

1

n
.
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Some results for MR

Let ‖bw
MR‖ = ‖bu‖ = 1. [Liesen & T. ’05]

Worst-case × unbiased case (MR)

‖rw

n−1‖ =
1

n
, ‖ru

n−1‖ >

√

2

3

1

n
.

Worst data for MR

u(0) = 0, u(1) = 0, f(z) ≈ cot
(πz

2

)

yield a worst right-hand side for MR.
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Worst data for CG

We are able to determine worst-case ̺w
CG,

̺w
CG bw

CG = Q̺w
CG diff. eq.







sin(πh)
...

sin(nπh)







↔









1

0
...
0









↔
f(z) = 0 ,

u(0) = 1 ,

u(1) = 0 .

CG started with x0 = 0 and bw
CG attains the worst-case relative A-norm of

the error in the (n − 1)st iteration step.
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Worst data for CG

We are able to determine worst-case ̺w
CG,

̺w
CG bw

CG = Q̺w
CG diff. eq.







sin(πh)
...

sin(nπh)







↔









1

0
...
0









↔
f(z) = 0 ,

u(0) = 1 ,

u(1) = 0 .

CG started with x0 = 0 and bw
CG attains the worst-case relative A-norm of

the error in the (n − 1)st iteration step.

Another example: Let n be even.

u′′(z) = 0 , u(0) = 1 , u(1) = 1 =⇒ b = [1, 0, . . . , 0, 1]T .

Then ‖x − xn/2‖A/‖x‖A is the worst possible one and CG finds the
solution in the following step. [Liesen & T. ’05]
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Numerical experiment

0 20 40 60 80 100 120
10

−3

10
−2

10
−1

10
0

κ − bound 
worst−case bound 

MR(A,b
MR
w )  CG(A,b

CG
w )

MR(A,b
CG
w ) 



P. Tichý and J. Liesen 18

Conclusions

[Liesen & T. ’05]

For MR (A is normal) and for CG (A is SPD):

● The next-to-last iteration step is completely understood!

● Our results allow to study model problems with known eigenvalues .

● For 1-D Poison equation we obtained interesting results:

→ particular worst-case quantities in the next-to-last step,

→ implications for the connection between the differential equation and
the linear solver for the discretized problem.
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Thank you for your attention!



P. Tichý and J. Liesen 19

Thank you for your attention!

More details can be found in

Liesen, J. and Tichý, P. , The worst-case GMRES for normal
matrices , BIT Numerical Mathematics, Volume 44, pp. 79-98, 2004.

Liesen, J. and Tichý, P. , On the next-to-last CG and MR
iteration step , submitted to ETNA, January 2005.

See also http://www.math.tu-berlin.de/˜tichy
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