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A system of linear algebraic equations

Consider a system of linear algebraic equations

Ax =0

A € R™ ™ is nonsingular and normal, b € R".

e How to construct an approximation to the solution?
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A system of linear algebraic equations

Consider a system of linear algebraic equations

Ax =0

A € R™ ™ is nonsingular and normal, b € R".

e How to construct an approximation to the solution?

Krylov subspace methods  — Given zg € R", rg = b — Axg. Find x;,

Tr; € To+ ICz(A, 7“()) such that r; L Ci,

where 7; = b — Ax;, K;(A, 7o) = span {rg,--- , A" 1rg}.
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OR and MR Krylov subspace methods

Let xp = 0, I.e. rg = b — Axg = b (for simplicity).
Orthogonal Residual (OR) and Minimal Residual (MR) approach

(OR) Find «x; € K;(A,b) such that r; L IC;(A,b).
(MR) Find «x; € K;(A,b) such that r; L AIC;(A,b).
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OR and MR Krylov subspace methods

Let xp = 0, I.e. rg = b — Axg = b (for simplicity).
Orthogonal Residual (OR) and Minimal Residual (MR) approach

(OR) Find «x; € K;(A,b) such that r; L IC;(A,b).
(MR) Find «x; € K;(A,b) such that r; L AIC;(A,b).

Optimality properties

(OR) leila = minfp(A)zlla (A is SPD),
(MR) lrsll = min [[p(A)b],
peET;

where e; = x — x;, m; = { pis a polynomial; deg(p) < i; p(0) = 1}.
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The problem of convergence

MR constructs approximations z; € K;(A,b) to the solution z of the
system Az = b such that

|ri]| = min |[p(A) b}

pET;

e Our aim:
Description and understanding of this minimization process.

e Considered classes of matrices in this talk:

Normal matrices, symmetric and positive definite matrices,
symmetric positive definite tridiagonal Toeplitz matrices.

e \We denote the OR method for SPD matrices as the CG method (Conjugate
Gradient).
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Outline

1. Introduction

2. Convergence bounds

3. Formulas for the next-to-last CG and MR iteration step
4. Application to symmetric tridiagonal Toeplitz matrices
5. Model problem: 1D Poisson equation

6. Conclusions
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Convergence of the MR method

Let A be normal, L = {\1,..., Az}, ||b]| = 1. Then

sl = min |[p(A)D]
peET;
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Convergence of the MR method

Let A be normal, L = {\{,..., A}, ||b]| = 1. Then

sl = min |[p(A)D]
peET;

VAN

max min ||p(A)b| (worst-case)
[b]| =1 pEm

= min []p(A)]
pET;

= mi Y
min max [p(A;)|
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Convergence of the MR method

Let A be normal, L = {\1,..., Az}, ||b]| = 1. Then
lrill = min [|p(A)bl]
peET;

< max min |[p(A)b|| (worst-case)
[b]| =1 pEm

= min [[p(A)]
pET;

= mi Y
min max [p(A;)|

e |n this sense we understand the MR-CG worst-case behaviour.

e How to describe ||r;|| or the worst-case bound in terms of input data?
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General formula for the MR residual

Krylov matrix
Kii1 = [b,Ab,..., A"D].

Residual r; can be written as ( Assumption: K;; has full column rank )

1
(K )P el

ri o= |l (K) e = il =

[Ipsen 00, Liesen & Rozloznik & Strakos '02]
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General formula for the MR residual

Krylov matrix
Kii1 = [b,Ab,..., A"D].

Residual r; can be written as ( Assumption: K;; has full column rank )

1
(K )P el

ri o= |l (K) e = il =

[Ipsen 00, Liesen & Rozloznik & Strakos '02]

We consider A and b in the form

A:QAQHa b:Q[Q17'°'7Qn]T-

We will assume that all eigenvalues of A are distinct .
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The next-to-last MR iteration step

Let o; # 0 for all 5. Then

2\ /2
n )\k
[, = .
) - HAk_)\j

k=1
k#j

[Liesen & T. '04, Ipsen '00]

]l = (Z

g=1
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The next-to-last MR iteration step

Let o; # 0 for all 5. Then

2\ /2
n )\k
[, = .
) - HAk_)\j

k=1
k#j

[Liesen & T. '04, Ipsen '00]

sl = (Z

g=1

Using Cauchy’s inequality,

—1
Hrn—lH _ Z‘l]‘ ’
bl — \ &

waR — Q[QT?"'?QZ]T7 |Q;€U‘2:7‘lk‘7 kzl?"'?”?

where

~ > (0 Is any scaling factor. [Liesen & T. '04]
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The next-to-last CG iteration step

CG can be seen as MR for a special right hand side b,

min ||p(A)xz||a = min [[p(A)A'/*z|| = min ||p(A)d]| .
pET; pPET; pET;
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The next-to-last CG iteration step

CG can be seen as MR for a special right hand side b,

min [|p(A)z]a = min [[p(A)A"*z|| = min [|p(A)b] .

peET; peT; peE™T;
Then
1/2 2\ —1/2 - —1
_ ezl (<,
Hen—lHA T Z ) wa H - Z‘l]| y
=1 ccllA =1
hv . Q[ w w1T wl|2 __ Al E—1
ca Ql?"'in] ) ‘Qk‘ _7‘ kk‘a = L,..., N,

~ > 0 Is any scaling factor.
[Liesen & T. '05]
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Summary (the next-to-last iteration step)

The next-to-last step of CG and MR is completely understood!

We know

e the convergence quantities,

e the worst-case convergence quantities and corresponding b*.

P. Tichy and J. Liesen
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Summary (the next-to-last iteration step)

The next-to-last step of CG and MR is completely understood!

We know

e the convergence quantities,

e the worst-case convergence quantities and corresponding b*.

How to use this information?

e \We can study the influence of the right hand side,
e We can compare the worst-case bound with classical bounds,

e we can determine right hand sides leading to the slowest convergence
and identify the worst input data of our original problem.

P. Tichy and J. Liesen
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Symmetric tridiagonal Toeplitz matrices

Consider linear algebraic systems Ax = b, where

Let o and 3 be such that A is symmetric and positive definite

and J. Liesen

E ]Ran

matrix.
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Symmetric tridiagonal Toeplitz matrices

Consider linear algebraic systems Ax = b, where

E ]Ran

Let o and 3 be such that A is symmetric and positive definite matrix.

Eigenvalues and eigenvectors of A are known

A = a4+ 20 cos(kmh),
g = (2h)"/? [sin(k7h),sin (2knh),...,sin (nkrh)]",

where h = (n 4 1)~ 1.



Worst-case bound versus classical x-bound

Now we are able to determine [, and the worst-case bound

~1
e _1]la _ zn:|l| -~ 2yn—1
||66”||A o J 14+02 4 ... 4 p2(n—=1) 4 12n’

where
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Worst-case bound versus classical x-bound

Now we are able to determine [, and the worst-case bound

—1

len_1lla . 2yn—1
e Dol |
led ]| a pt J 14+ 22+ - 4 2(n—1) ; 12n

where

\/E_1 H:)\maa:
VE+1 Amin

Vv =

The classical k-bound is given by

.
legla = T+o2mn =2

P. Tichy and J. Liesen
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Model problem: Poisson equation

—u'(2) = f(2), z€(0,1), u(0) = ug, u(l) =u.

The central finite difference approximation on the uniform grid kh,
k=1,...,n,h=1/(n+ 1), leads to a system Az = b

2 -1 f(h) Uo

-1 2 f(nh) Uy

The eigenvalues )\, and the eigenvectors ¢, of A are known,

kmh h
A\, = 4sin? (%) = [ = 2 cos? <%>

[Liesen & T. '05]

P. Tichy and J. Liesen
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Various right hand sides

Formulas for the next-to-last step

—1/2

, ||€n—1HA — Z

n 2 1/2

lraall = D

g=1

Qj

We consider two types of right hand sides:

e worst-case b’s: right hand sides leading to maximal relative
convergence quantities in the next-to-last step — by, 5, b

e unbiased b — b, all o, are of equal size.

P. Tichy and J. Liesen

—1/2
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Some results for MR

Let [0 pll = [[0*]] = 1.

Worst-case X unbiased case (MR)

P. Tichy and J. Liesen

71l : 1l > \Fl
T = — T - —.
n—1 n? n—1 37?,

[Liesen & T. '05]
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Some results for MR

Let [0 pll = [[0*]] = 1.

Worst-case X unbiased case (MR)

71l : 1l > \Fl
T = — T - —.
n—1 n? n—1 37?,

Worst data for MR

yield a worst right-nand side for MR.

P. Tichy and J. Liesen

[Liesen & T. '05]
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Worst data for CG

We are able to determine worst-case o¢ -,

w
Oca

sin(mh)

sin(nwh)

bée = Qoéa diff. eq.
i

0 f(Z — 07

_ — u0) =1,

: u(l) = 0.
L O -

CG started with o = 0 and b, attains the worst-case relative A-norm of
the error in the (n — 1)st iteration step.

P. Tichy and J. Liesen

16



Worst data for CG

We are able to determine worst-case o¢ -,

Yele bée = Qoda diff. eq.
I 1 ]

sin(h) O ) = o,

: — _ — u(0) = 1,

I sin(nwh) | O u(l) = 0.

CG started with o = 0 and b, attains the worst-case relative A-norm of
the error in the (n — 1)st iteration step.

Another example: Letn be even.
W' (2)=0, u(0)=1, u(l) =1 = b=][1,0,...,0,1]L.

Then ||z — z,,/2]|4/|/z| 4 is the worst possible one and CG finds the
solution in the following step. [Liesen & T. '05]

P. Tichy and J. Liesen
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Numerical experiment

10°
K — bound
worst—case bound

101

MR(A,b ) CG(A, b )

CG
10_2_—
MRADL)
10‘3 | | | | |
0 20 40 60 80 100 120
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Conclusions

[Liesen & T. '05]
For MR (A is normal) and for CG (A is SPD):

 The next-to-last iteration step is completely understood!

e QOur results allow to study model problems with known eigenvalues

e For 1-D Poison equation we obtained interesting results:
— particular worst-case quantities in the next-to-last step,

— implications for the connection between the differential equation and
the linear solver for the discretized problem.

P. Tichy and J. Liesen
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P. Tichy and J. Liesen

Thank you for your attention!
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Thank you for your attention!

More details can be found in

Liesen, J. and Tichy, P. , The worst-case GMRES for normal

matrices , BIT Numerical Mathematics, Volume 44, pp. 79-98, 2004.

Liesen, J. and Tichy, P. , On the next-to-last CG and MR
iteration step , submitted to ETNA, January 2005.

See also http://www.math.tu-berlin.de/"tichy

P. Tichy and J. Liesen
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