Learning Random Numbers: A Matlab Anomaly

Petr Savicky', Marko Robnik-Sikonja?

! Institute of Computer Science,
Academy of Sciences of Czech Republic
Pod Vodarenskou Vezi 2, 182 07 Praha 8, Czech Republik
savicky @cs.cas.cz

2 University of Ljubljana,
Faculty of Computer and Information Science,
Trzaska 25, 1001 Ljubljana, Slovenia
Marko.Robnik @fri.uni-lj.si

Abstract

We describe how dependencies between random numbers generated with some
popular pseudorandom number generators can be detected using general purpose
machine learning techniques. This is a novel approach, since usually, pseudo-
random number generators are evaluated using tests specifically designed for this
purpose. Such specific tests are more sensitive. Hence, detecting the dependence
using machine learning methods implies that the dependence is indeed very strong.
The most important example of a generator, where dependencies may easily be
found using our approach, is Matlab’s function rand if the method state is used.
This method was the default in Matlab versions between 5 (1995) and 7.3 (2006b),
i.e. for more than 10 years. In order to evaluate the strength of the dependence
in it, we used the same machine learning tools to detect dependencies in some
other random number generators, which are known to be bad or insufficient for
large simulations: the infamous RANDU, ANSIC, the oldest generator in C li-
brary, Minimal Standard generator, suggested by Park and Miller in 1988, and the
rand function in Microsoft C compiler.

Keywords: random numbers, machine learning, classification, attribute evaluation,
regression

1 Introduction

Random numbers are part of many machine learning and data mining techniques, for
example, we randomly select instances and features, test our algorithms with many
variants of randomly generated data sets, etc. Many methods heavily rely on random

numbers, e.g., many ensemble methods, variants of Hidden Markov Models, random
projections, etc. Some have the word random even in their name, for example Random
Forests. The purpose of this paper is to bring the importance of using good random
number generators into attention of machine learning and data mining communities.
Users and developers are usually not concerned about the random numbers, when de-
veloping and using machine learning tools, they simply use the generator supplied
within the favorite software package, library, or tool. We show in this paper, that this
approach may be dangerous, even if the considered software package is such a widely
used and renowned tool for technical computing as Matlab.

A pseudorandom number generator is an algorithm that is initialized with a seed
and generates a deterministic sequence of numbers depending on the seed, which mim-
ics a sequence of independent and identically distributed (i.i.d.) numbers chosen uni-
formly from [0, 1]. In practice, pseudo-random numbers are important for simulations
and for certain algorithms, e.g., Monte Carlo methods. A good generator produces
numbers that are not distinguishable from truly random numbers in a limited compu-
tation time, if the seed is not known. It is sometimes tolerated, that the numbers are
distinguishable from truly random numbers using functions, which cannot appear as a
part of the application domain, where the generator is used. This is, in particular, true
for Mersenne Twister (Matsumoto and Nishimura, [1998), a popular recent generator,
which may easily be predicted, if the arithmetic modulo 2 is used and several hundreds
of last numbers are known.

The history of scientific computing is full of bad pseudorandom number generators,
producing sequences with strong and easy to detect dependencies (Park and Miller|
1988). Possibly, the most infamous generator of this kind was RANDU, introduced
in 1970 (more details on this generator can be be found in Wikipedia (http://en.
wikipedia.org/wiki/Pseudo-random_number_generator). One of the reasons
for the existence and awareness of the bad generators is the rapidly increasing power
of the computers. A generator that is good for generating sequences of certain length
may become inappropriate, when faster computers require longer sequences for larger
simulations. Another reason is that the software developers sometimes underestimate
the necessity to have a reliable generator and are satisfied with a sequence that looks
chaotic enough. Moreover, the users of the generators frequently think that some de-
pendencies should necessarily be tolerated, since they are using pseudorandom num-
bers. This is not true. It is consistent with the current state of knowledge that good
generators do exist, such that no dependence is detectable in them in a tractable amount
of time. See, for example (Goldreich,|1998};|2000).

As |Press et al.|(1988) say: “If all scientific papers whose results are in doubt be-
cause of bad rand()s[] were to disappear from library shelves, there would be a gap
on each shelf about as big as your fist”. The tolerance of existing dependencies in
generators may lead to severe consequences, since large simulations are sensitive even
to small discrepancies from the uniform distribution on sequences. Therefore, if the
results of the simulation are to be trusted, it is absolutely necessary, that no known
dependency exists in the generator.

An example of a generator with intolerable dependency is the default behavior of

Irand() is a system supplied random number generator.

http://en.wikipedia.org/wiki/Pseudo-random_number_generator
http://en.wikipedia.org/wiki/Pseudo-random_number_generator

function rand in Matlab versions between 5 (1995) and 7.3 (2006b), see (Savickyl
2006). The main purpose of the current paper is to demonstrate the strength of the
dependence in this generator by showing that the dependence may be detected not
only by specialized tests, but also using general machine learning tools. Moreover,
the dependence appears to be stronger than the dependencies in some other generators,
which are known to be insufficient.

General purpose methods from machine learning are less sensitive to dependencies
in random numbers than the specialized tests for this purpose and only relatively strong
dependencies can be detected. However, the consequences are severe for machine
learning and data mining results. Generators with this kind of dependencies cannot be
used even for approximate calculations in machine learning. If a dependence may be
detected even by general machine learning tools, then analytic results obtained using
such generator are in doubt. The statistical estimates obtained from these results may
be highly biased due to the dependencies in the used random numbers. In the current
paper, we show that the above mentioned generator in Matlab belongs to this category
of generators.

The level of dependency can be measured in terms of the length of the sequence
that is needed to distinguish the output of the generator from the i.i.d. sequence of
uniformly distributed numbers from [0, 1] on a specific level of statistical significance.
The (L’ Ecuyer et al.| 2002)) is an example of an experimental study of random number
generators from this viewpoint, where the severity of the dependencies is measured
using specialized tests designed specifically for testing pseudorandom number gener-
ators. In particular, it is shown that linear congruential generators should not be used
beyond the square root of their period (which for 232 is 216 = 65536).

We tried different machine learning techniques to detect dependencies between ran-
dom numbers: classification, attribute evaluation and regression. We tested the follow-
ing random number generators

e the default behavior of the function rand in Matlab versions between 5 (1995) and
7.3 (2006b). Alternatively, this generator may be invoked by seeding rand with
the command rand(’state’,seed). This way of invoking the generator is available
also in the current releases of Matlab. We call this generator as method state of
rand and abbreviate it rand_state,

e Minimal Standard generator (MINSTD) (Park and Miller, [1988)),
o ANSIC generator, which is the generator from the oldest versions of C library,
e rand() function in Microsoft C compiler, which we call MS _rand.

e RANDU generator, which is the well-know bad generator introduced in 1970.
Since even seeds may lead to shorter periods, we used only odd seeds in our
experiments, unless otherwise stated explicitly.

Besides the first one, these generators are pure linear congruential generators. The
spectral test of some of them may be found at http://random.mat.sbg.ac.at.
These four generators are known to be insufficient for current simulation experiments,

http://random.mat.sbg.ac.at

although MINSTD is still sometimes used. We used these generators for comparison
of the strength of the dependence in rand_state.

For our study, we needed also a reliable random number generator. We used
MRG32k5a from (L’Ecuyer, 1999). For comparison, we used also WELL19937a,
which is an improvement of Mersenne Twister with the same period, see (Panneton
et al., 2006). The differences between MRG32k5a and WELL19937a were insignifi-
cant in all our experiments.

In Section 2| we define different learning problems used in our analysis. In Section
we describe the analytical methods, which we used. The experimental results are
presented in Section[d] Section [5]contains conclusions and recommendations.

1.1 Related Work

There are many studies about pseudorandom numbers and their generation for non
specialists e.g., (Park and Miller,|1988). Comprehensive information on pseudorandom
number generation may be found e.g. in (Knuth} |1998; |L’Ecuyer, 2006). A large
collection of specialised test of random number generators is described in (L’Ecuyer
and Simard} 2006), where the dependency in rand_state is also detected.

We are not aware of any work giving attention to random numbers in the context
of machine learning. A recent study concerning insufficient quality of another widely
used generator is (Wichman and Hill, [2006).

2 Learning Problems

We formulate a problem of detecting dependencies in pseudorandom number gener-
ators as a machine learning problem of predicting the next number. Our notion of
an instance is a sequence of 32 consecutive random numbers Z;, i = 1,...,32 from
[0,1] interval generated with the tested random number generator. The length 32 of
the considered subsequences is chosen as a number, which is slightly larger than 28,
which is necessary to detect the dependence in rand_state. We take the first 31 numbers
Z1,...,Z31 as independent variables (attributes) and Z3, as response variable (predic-
tion value). We consider several variants of the problem, which differ in the way, how
Z3; is used. Namely,

1. Regression. In this problem, we try to predict the response variable Z3;, directly
from the independent variables.

2. Feature evaluation. We use feature evaluation algorithm to measure the impor-
tance of the features for prediction of Z3, as response variable in regressional
problem.

3. Thresholding. This is a classification problem, where the response variable Z3,
is transformed to a class variable by comparing to the threshold 0.5. Class 1
corresponds to Z3, > 0.5, class 0 to the opposite.

4. Two values. This is a classification problem, where only some of the generated
instances are used. Class 0 corresponds to instances, where |Z3; —0.25| < 0.025

and class 1 corresponds to instances, where |Z3; —0.75| < 0.025. Instances not
satisfying some of these two conditions are discarded.

In the two classification problems we considered the accuracy of random forests
predictor and some other classifiers. The regression formulation was used for at-
tribute evaluation using RReliefF algorithm (Robnik-gikonja and Kononenko, 2003)
and learning of regression models.

The data set is created by generating a sequence of consecutive numbers from the
investigated generator and splitting them into disjoint subsequences of length 32 as
discussed above. It is necessary to point out that in the presence of dependencies, the
sample obtained in this way does not consist of independent realizations from the same
distribution. The reason is that there are not only dependencies inside the considered
subsequences, but also among the numbers in consecutive subsequences. Since the ma-
chine learning techniques, which we use, are not sensitive to the order of the instances
in the sample, this effect is negligible.

3 Learning methods

For a good generator, the three learning problems described in Section |2{do not allow
prediction of the response variable. Hence, when we construct a classifier using any
method, its accuracy on a test set should not be distinguishable from accuracy of a
random guess. We will see in Section [4] that for some of the investigated generators,
the accuracy is better than random guess on a high level of statistical significance.

Alternatively, for a good generator, none of the predictors in the three learning
problems has a measurable dependence on the response variable. Hence, if we apply
any feature selection method, none of the features should receive a score different
from the score of a completely irrelevant attribute. In Section @} we show examples
of generators, for which the scores of some of the features differ significantly from
a score of a noisy attribute. This is another demonstration of the bad quality of the
generators.

In the following subsections, we describe the machine learning tools used for classi-
fier construction and feature evaluation in more detail. We have used machine learning
algorithms in Weka (Witten and Frank, [1999), R Environment for Statistical Comput-
ing (R Development Core Team) 2006) and the Core learning system available from
http://1lkm.fri.uni-1j.si/rmarko/software/.

3.1 Constructing classifiers and regressors

For the two classification problems described in Section [2] we initially tried several
classification methods from Weka (decision trees, boosting, random forests, SVM,
neural networks, ripper). As several of them were competitive, for the reason of com-
putational efficiency we decided to make more detailed experiments only with random
forests implementation in R.

Random forests (RF) (Breiman, |2001)) method is an ensemble method, which builds
a large number of decision/regression trees using bootstrap sample of data and in each

http://lkm.fri.uni-lj.si/rmarko/software/

tree node selects the best split from randomly selected subset of attributes. In this way
we get fine-grained partitioning of the problem space which has good generalization
due to combination of many base tree models.

We used similar approach also for regression problem (described in Section [2)),
and initially tried several methods from Weka and R (regression model trees, locally
weighted regression, linear models, nearest neighbor, neural networks). Again several
of them were competitive and we selected the computationally most efficient ones im-
plemented in Core. These were regression trees using different models in the leaves:
linear models, locally weighted regression, or nearest neighbor method with Gaussian
kernel.

3.2 Attribute Evaluation

We try to determine which attributes the response variable depends on. There are two
machine learning approaches to attribute evaluation. The first is based on the impurity
functions (measuring purity of prediction value distribution after the split on selected
attribute value). This approach assumes the conditional independence of the attributes
upon the target variable and is therefore inappropriate for problems which possibly
involve much feature interaction. The second kind of heuristics are context dependent
using the distance and can correctly estimate the quality of attributes in the problems
with strong dependencies between attributes. The most successful representatives are
algorithms ReliefF in classification and RReliefF in regression (Robnik-gikonja and
Kononenko| 2003). A key idea of these algorithms is to estimate the quality of the
attributes according to how well their values distinguish between instances that are
near to each other. Values of a good attribute should separate instances with different
prediction values and not separate instances with close prediction values. For a chosen
sample of instances ReliefF and RReliefF find their nearest neighbors and update the
quality estimates of the attributes depending how their values separate instances: they
get a positive update for separating instances with different prediction values, and a
negative update for separating instances with close prediction values. The way these
algorithms work enable them to detect dependencies for which the nearest neighbor
paradigm holds: close instances should have close prediction values. We have used
RReliefF in our study using the default set of parameters.

4 Experimental results

4.1 Accuracy of Random Forests classifiers

The dependencies in some of the investigated generators are so strong that a prediction
of the response in the “thresholding” and “two-values” problems may be done using
the Random Forests predictor. Prediction accuracy depends on the size of the training
sample. We made some preliminary tests in order to determine the sample size appro-
priate for the main experiment. Already the training sample of size 10* is sufficient
to obtain a classifier with the probability of correct prediction about 0.6 for rand_state.
This is sufficient to reject the null hypothesis that the generator produces i.i.d. num-

median of accuracy p-value of KS test
generator thresholding two values | thresholding two values
ANSIC 0.49961 0.50046 0.1706 0.4400
MINSTD 0.49952 0.5005 0.1561 0.0933
MRG32k5a 0.50034 0.49986 0.7578 0.132
MS _rand 0.50021 0.4979 0.8954 2.2-1074
rand_state 0.63928 0.68625 | <22-1071¢ <22.107!¢
RANDU 0.50234 0.51537 | 6.3-1073 <22-10716
WELL19937a | 0.50014 0.49997 0.5664 0.7808

Figure 1: Accuracy of the constructed classifiers for the two classification problems

bers from uniform distribution on [0, 1]. Under the null hypothesis, the probability of
correct prediction should be 0.5. However, for other generators, the obtained accuracy
for this training sample size is not sufficient for a similar conclusion. Hence, the main
experiment uses sample size 5- 10%, for which at least the dependence in RANDU is
detected besides rand_state.

For each tested generator and both learning problems “thresholding” and “two-
values”, we constructed 20 samples of size s = 5 - 10* for training and 20 samples of
the same size for testing accuracy. Hence, for each generator, we obtain 20 estimates
of the prediction accuracy for both used problems, which will be denoted a; j, where
i=1,...,20 is the index of the pair of training and testing sample and j = 1,2 is 1
for “thresholding” and 2 for “two-values” problem. Under the null hypothesis, the
prediction behaves exactly as random guessing, since the predicted value and the true
response are independent. Hence, the number of correct predictions C is a random
variable chosen from the binomial distribution with n = s trials and probability p = 0.5
of success in each trial. Since n is quite large, the distribution of the prediction accuracy
C/n is approximately normal with mean 0.5 and variance 1/(4n). The following table
contains for each tested generator and both learning problems indexed by j = 1,2 the
median of the numbers a; ; for i = 1,...,20 and the p-value of Kolmogorov-Smirnov
(KS) test of the hypothesis that the numbers a; ; are chosen from the normal distribution
with the parameters described above.

Using the p-values in Figure[I] we can make the following conclusions. For AN-
SIC, MINSTD, the deviation of the accuracies from random guessing is not significant.
For MS _rand, the difference is significant for “two values” on a moderate level. For
RANDU and rand_state, the accuracy for both problems allow to reject the randomness
of the generator on a strong level of statistical significance. The “two values” tech-
nique is more sensitive in detection of dependencies in the tested generators than the
“thresholding”.

4.2 Detecting dependencies using RReliefF

The most sensitive method for detecting dependencies in the investigated generators
was RReliefF algorithm for feature evaluation. For this experiment, we used the re-

sample generator g
K ANSIC MINSTD MS_rand rand_state RANDU
5.1 14-1007 26-1007 69-1007 62-1007% 12-1072
1-10* | 2.3-107° 99.-10°! 14.-1073 62-100% 6.2-10714
2-10* | 6.2-107% 99.107! 62-107* 6.2-107*4 6.2-107
5-10* | 6.2-107% 1.0-107* 62-100% 62-1004 6.2.-1071
1-10° | 6.2-107% 6.2.-100% 62-1074 62-107* 6.2-10714

Figure 2: The p-values of the KS-test comparing RReliefF scores for different sample
sizes and generators.

gression formulation of the problem. RReliefF algorithm determines a score for each
predictor in the data, which estimates the level of the dependence between the predic-
tor and the response variable. For bad generators, some of these scores are larger in
absolute value than what may be expected for i.i.d. data from the uniform distribution,
since there are dependencies between the predictors and the response variable. Several
samples were constructed for each generator and the scores were calculated for each
sample. In order to interpret the results, we used statistical hypothesis testing, where
the null hypothesis is that the tested sample consists of i.i.d. numbers chosen from the
uniform distribution on [0, 1]. Since the exact distribution of the scores under the null
hypothesis is not known, we compared the scores from a tested generator g with scores
obtained under the same conditions from a reliable generator (MRG32k5a), which we
denote gg.

Sensitivity of RReliefF algorithm increases with the number of used instances,
i.e. the sample size s. We used 5 different sizes s shown in the first column of the
table in Figure[2]in order to show that the dependencies in different generators require
different sample size to be detected. This allows comparison of the strength of the de-
tected dependencies in different generators. For each used sample size s and each tested
generator g, we constructed 24 samples of size s indexed by i = 1,...,24. For sample
i, we obtained the score v; ; for each predictor j = 1,...,31. For simplicity, the vector
of scores for sample i was transformed into a single statistics d; = max;v; ; —min;v; ;.
As a result, we obtained the numbers d;, i = 1,...,24 for the generator g. Let d/,
i=1,...,24 be the numbers obtained using the same procedure for generator go. Un-
der the null hypothesis on g and g¢, we have two i.i.d. samples of size 24 chosen from
the same unknown distribution. In order to test this hypothesis, we used two-sided
KS-test. The p-values for each s and g are presented in the table in Figure 2]

The table shows that the dependence in rand_state is detected for all tested sample
sizes including the smallest one. Note that the p-value 6.2- 10~ corresponds to the
situation, when the ranges of the values in the two tested samples are disjoint. The
dependence in RANDU is also detected for all sample sizes s. For the remaining gen-
erators, this is not true. Detecting the dependence in ANSIC and MS _rand requires at
least 10* instances and in MINSTD at least 5 - 10* instances.

generator RMSE (stdev) p-value of KS test
ANSIC 1.12 (0.008) 0.77

MINSTD 1.12 (0.010) 0.77

MRG32k5a 1.12 (0.009) 1.0

MS _rand 1.12 (0.007) 0.77

rand_state 0.88 (0.016) 4.7-107°
RANDU 1.12 (0.011) 0.86

RANDUall 1.03 (0.127) 42-107°
WELL19937a | 1.12 (0.012) 0.50

Figure 3: The results of regression trees with linear models in the leaves for different
generators.

4.3 Learning regression models

We used 10* instances for training and the same number of instances for testing. As
models we used regression trees with linear models in the leaves. Initially we tried
also some other models in the leaves (locally weighted regression and nearest neigh-
bor method with Gaussian kernel), as well as some other learning algorithms (random
forests, neural networks), but as the results are quite similar, we report results only for
the fastest method, i.e., regression trees with linear models in the leaves. We report the
results in the Table [3] The RMSE column contains the average relative mean squared
error (RMSE) and its standard deviation. RMSE is a mean squared error of the predic-
tor divided by the error of the predictor which always predicts the mean response value
of the training set. The numbers given are averages over over 20 runs. For learning to
be successful RMSE should be less than 1. The p-value column gives the p-value of
KS test of the hypothesis that the RMSE results for given generator are not different to
RMSE of MRG32k5a.

As seen from the results the dependence in rand_state was clearly detected and
RMSE of rand_state is consistently below 1. In other generators, the dependence was
not detected, except of RANDUall, which denotes RANDU generator with random
seed from both odd and even integers. Even seeds lead to shorter lengths of the period
and, hence, lead to sequences that are easier to predict. Since the results are based on
different period lengths, the results for RANDUall have larger standard deviation than
from a other generators. If we use only odd seeds, RANDU behaves quite well in this
test.

5 Conclusion

The paper demonstrates that the dependence in the default function rand in Matlab
versions between 5 (1995) and 7.3 (2006b) may easily be detected by standard machine
learning tools. This finding is a severe warning against relying on the results obtained
using this generator. Experiments with other generators known to be bad reveal that
only the RANDU generator has a dependence, which is detectable at comparable level

using the same tools. Dependencies in ANSIC, MINSTD and MS_rand are harder to
detect (we need more instances for learning). Still we warn against their use in machine
learning and data mining. It turned out that the most sensitive tool for detection of
dependencies was RReliefF algorithm commonly used in feature selection.

Learning regression models (Section [4.3)) detected the dependence only in method
state of Matlab’s rand. Probably, increasing the number of used instances allows to
detect the dependence also in other tested generators, but this was not important to
show our main point.

A possible direction for further research is to change the definition of classification
tasks. Instead of deriving the class from one of the generated values, we may gener-
ate instances from two different generators, one reliable and the other suspicious, and
label instances from each generator with different class values. According to our exper-
iments, it is more difficult to detect dependencies this way, however, in case of success,
the rejection of randomness of the suspicious generator is even more convincing.

Another interesting task would be to repeat some experiments described in machine
learning and data mining publications where bad pseudorandom number generators
were used. If the results using a good generator are indeed different, this would be an
alarming result for the research community.

Acknowledgements

The first author was supported by Academy of Sciences of the Czech Republic under
the grant number 1ET100300517 (Information Society) and by Institutional Research
Plan AVOZ10300504. The second author was supported by Slovene Ministry of Higher
Education, Science and Technology through the research programme P2-0209.

References

L. Breiman. Random forests. Machine Learning Journal, 45:5-32, 2001.

O. Goldreich. Lecture notes on pseudorandomness - part I (polynomial-time genera-
tors). http://www.wisdom.weizmann.ac.il/ oded/c-indist.html, 2000.

O. Goldreich. Modern Cryptography, Probabilistic Proofs and Pseudorandomness
(Algorithms and Combinatorics, Vol 17). Springer-Verlag, 1998.

D. E. Knuth. The Art of Computer Programming, Vol. 2: Seminumerical Algorithms,
3rd ed. Addison-Wesley, Reading, Massachusetts, 1998.

L’Ecuyer and R. Simard. TestUOl: A C Library for Empirical Testing of Random

Number Generators. to appear in ACM Transactions on Mathematical Software,
2006.

P. L’Ecuyer. Random number generation. In S. G. Henderson and B. L. Nelson, editors,

Handbooks in Operations Research and Management Science: Simulation. Elsevier,
2006.

10

P. L'Ecuyer. Good parameter sets for combined multiple recursive random number
generators. Operations Research, 47(1):159—-164, 1999.

P. L’Ecuyer, R. Simard, and S. Wegenkittl. Sparse serial tests of uniformity for random
number generators. SIAM Journal on Scientific Computing, 24(2):652—-668, 2002.

M. Matsumoto and T. Nishimura. Mersenne twister: A 623-dimensionally equidis-
tributed uniform pseudorandom number generator. ACM Trans. on Modeling and
Computer Simulation, 8(1):3-30, 1998.

F. Panneton, P. L’Ecuyer, and M. Matsumoto. Improved long-period generators based
on linear recurrences modulo 2. ACM Transactions on Mathematical Software, 32
(1):1-16, 2006.

S. K. Park and K. W. Miller. Random number generators: Good ones are hard to find.
Communications of the ACM, 12(10):1192-1201, 1988.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numerical recipes
in C. Cambridge University Press, 1988.

R Development Core Team. R: A Language and Environment for Statistical Com-
puting. R Foundation for Statistical Computing, 2006. URL http://www.
R-project.org.

M. Robnik-Sikonja and I. Kononenko. Theoretical and empirical analysis of ReliefF
and RReliefF. Machine Learning Journal, 53:23-69, 2003.

P. Savicky. A strong nonrandom pattern in Matlab default random number generator,
2006. URL http://www.cs.cas.cz/~savicky/papers/rand2006.pdfl

B. Wichman and I. Hill. Generating good pseudo-random numbers. Computational
Statistics and Data Analysis, 51, 2006.

I. H. Witten and E. Frank. Data Mining: Practical Machine Learning Tools and Tech-
niques with Java Implementations. Morgan Kaufmann, San Francisco, 1999.

11

http://www.R-project.org
http://www.R-project.org
http://www.cs.cas.cz/~savicky/papers/rand2006.pdf

	Introduction
	Related Work

	Learning Problems
	Learning methods
	Constructing classifiers and regressors
	Attribute Evaluation

	Experimental results
	Accuracy of Random Forests classifiers
	Detecting dependencies using RReliefF
	Learning regression models

	Conclusion

