The patch C to function choose() from the email https://stat.ethz.ch/pipermail/r-devel/2009-December/056177.html uses the following two transformations.

Transformation 1

If $n<0$, patch C uses the transformation

$$
\begin{equation*}
\binom{n}{k}=\frac{n}{k}\binom{n-1}{k-1}=\frac{n}{k}\binom{k-1-n}{k-1}(-1)^{k-1} . \tag{1}
\end{equation*}
$$

The original implementation uses

$$
\begin{equation*}
\binom{n}{k}=\binom{k-1-n}{k}(-1)^{k} . \tag{2}
\end{equation*}
$$

If n is negative, but close to 0 , then the factor n in the right hand side of (1) keeps accuracy on the contrary to the expression $k-1-n$. In (2), n occurrs only in $k-1-n$, from which the number $-n$ is later reconstructed as $(k-1-n)-(k-1)$. This introduces a larger relative error compared to a direct use of n.

The difference between (1) and (2) is most remarkable for $-10^{-7} \ll n<0$. In this case, the original implementation produces 0 . Due to this, the difference may be demonstrated only for $n \leq-10^{-7}$, where it is not large. For example

```
n <- - 1.04e-7
x <- choose(n, 30)
y <- prod((n - 0:29)/(1:30))
(x - y)/y # [1] 1.441896e-08
```

With patch C, we get

```
(x - y)/y # [1] 4.772194e-15
```


Transformation 2

If the product $n(n-1) \ldots(n-k+1)$ contains both positive and negative factors, then patch C defines $l=\operatorname{round}(n)$ and uses the following transformation, which is valid for every $0 \leq l \leq k-1$.

$$
\begin{equation*}
\binom{n}{k}=\frac{\binom{n}{l}(n-l)\binom{n-l-1}{k-l-1}}{\binom{k}{l}(k-l)}=\frac{\binom{n}{l}(n-l)\binom{k-n-1}{k-l-1}(-1)^{k-l-1}}{\binom{k}{l}(k-l)} \tag{3}
\end{equation*}
$$

The three binomial coefficients in the right hand side of (3) are then evaluated using lbeta() as $B(n-l+1, l+1), B(l-n+1, k-l), B(k-l+1, l+1)$. In these calls, the first argument of $B($,$) is always at least 0.5$ and the second is at least 1 . In this situation, the function $\operatorname{lbeta}()$ is numerically stable.

The original implementation uses in this case Gamma function (lgammafn_sign()) instead of Beta, which is less stable than (3) and sometimes produces warnings concerning the accuracy. For example

```
choose(19 - 2e-7, 30)
# [1] -3.328339e-16
# Warning message:
# In choose(19 - 2e-07, 30) : full precision was not achieved in 'lgamma'
```

