The patch C to function choose() from the email https://stat.ethz.ch/pipermail/r-devel/2009-December/056177.html uses the following two transformations.

Transformation 1

If n < 0, patch C uses the transformation

$$\binom{n}{k} = \frac{n}{k} \binom{n-1}{k-1} = \frac{n}{k} \binom{k-1-n}{k-1} (-1)^{k-1} .$$
(1)

The original implementation uses

$$\binom{n}{k} = \binom{k-1-n}{k} (-1)^k .$$
⁽²⁾

If n is negative, but close to 0, then the factor n in the right hand side of (1) keeps accuracy on the contrary to the expression k - 1 - n. In (2), n occurs only in k - 1 - n, from which the number -n is later reconstructed as (k - 1 - n) - (k - 1). This introduces a larger relative error compared to a direct use of n.

The difference between (1) and (2) is most remarkable for $-10^{-7} \ll n < 0$. In this case, the original implementation produces 0. Due to this, the difference may be demonstrated only for $n \leq -10^{-7}$, where it is not large. For example

n <- - 1.04e-7
x <- choose(n, 30)
y <- prod((n - 0:29)/(1:30))
(x - y)/y # [1] 1.441896e-08</pre>

With patch C, we get

(x - y)/y # [1] 4.772194e-15

Transformation 2

If the product n(n-1)...(n-k+1) contains both positive and negative factors, then patch C defines l = round(n) and uses the following transformation, which is valid for every $0 \le l \le k-1$.

$$\binom{n}{k} = \frac{\binom{n}{l}(n-l)\binom{n-l-1}{k-l-1}}{\binom{k}{l}(k-l)} = \frac{\binom{n}{l}(n-l)\binom{k-n-1}{k-l-1}(-1)^{k-l-1}}{\binom{k}{l}(k-l)}$$
(3)

The three binomial coefficients in the right hand side of (3) are then evaluated using **lbeta()** as B(n-l+1, l+1), B(l-n+1, k-l), B(k-l+1, l+1). In these calls, the first argument of B(,) is always at least 0.5 and the second is at least 1. In this situation, the function lbeta() is numerically stable.

The original implementation uses in this case Gamma function (lgammafn_sign()) instead of Beta, which is less stable than (3) and sometimes produces warnings concerning the accuracy. For example

```
choose(19 - 2e-7, 30)
# [1] -3.328339e-16
# Warning message:
# In choose(19 - 2e-07, 30) : full precision was not achieved in 'lgamma'
```