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Abstract:

We give a simplified definition of Shary’s AE-solutions which leads to a simple proof of their
characterization.1
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1Above: logo of interval computations and related areas (depiction of the solution set of the system
[2, 4]x1 + [−2, 1]x2 = [−2, 2], [−1, 2]x1 + [2, 4]x2 = [−2, 2] (Barth and Nuding [1])).
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1 Introduction

In 1995 Sergey P. Shary proposed a new unifying view of different concepts of solutions of
interval linear equations by introducing quantifications over interval coefficients. His defini-
tion is reformulated here in order to make it, as well as the main characterization, as simple
as possible. E is the matrix of all ones and e is the vector of all ones.

Definition. Let |Z| = E ∈ Rm×n and |z| = e ∈ Rm. A vector x ∈ Rn is said to be a
(Z, z)-solution of a system Ax = b if for each Aij ∈ [Aij , Aij ] with Zij = −1 and for each
bi ∈ [bi, bi] with zi = −1 there exist Aij ∈ [Aij , Aij ] with Zij = 1 and there exist bi ∈ [bi, bi]
with zi = 1 such that Ax = b holds2.

2 Description

Despite the complexity of this definition, it turns out that description of (Z, z)-solutions
becomes wonderfully simple as soon as the Hadamard product “◦” is employed. The following
theorem constitutes a generalization of the Oettli-Prager theorem as well as of several other
previous results.

Theorem 1. (Shary-Lakeyev-Rohn) A vector x ∈ Rn is a (Z, z)-solution of Ax = b
if and only if it satisfies

|Acx− bc| ≤ (Z ◦∆)|x|+ z ◦ δ. (2.1)

Proof. Given Z and z with |Z| = E and |z| = e, first define interval matrices A1, A2 and
interval vectors b1, b2 by

A1 = {1
2(E − Z) ◦A | A ∈ A} = [A′c −∆′, A′c + ∆′],

A2 = {1
2(E + Z) ◦A | A ∈ A} = [A′′c −∆′′, A′′c + ∆′′],

b1 = {1
2(e− z) ◦ b | b ∈ b} = [b′c − δ′, b′c + δ′],

b2 = {1
2(e + z) ◦ b | b ∈ b} = [b′′c − δ′′, b′′c + δ′′].

As we can see, A1 is obtained from A by zeroing ijth interval coefficients with Zij = 1, A2

by zeroing those with Zij = −1, and an analogue holds for b1, b2. Then x is a (Z, z)-solution
if and only if for each A1 ∈ A1, b1 ∈ b1 the equation

(A1 + A2)x = b1 + b2,

i.e., the equation
A1x− b1 = b2 −A2x,

is satisfied for some A2 ∈ A2, b2 ∈ b2, which is equivalent to

{A1x− b1 | A1 ∈ A1, b1 ∈ b1} ⊆ {b2 −A2x | A2 ∈ A2, b2 ∈ b2}. (2.2)

But according to Proposition 2.27 in [2],

{A1x− b1 | A1 ∈ A1, b1 ∈ b1} = [A′cx−∆′|x| − b′c − δ′, A′cx + ∆′|x| − b′c + δ′]
2Thus “−1” corresponds to “∀” and “1” to “∃”. It could be argued that the reverse order would be more

natural, but we would have to pay for it by introducing minus signs into the main formula (2.1).
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and

{b2 −A2x | b2 ∈ b2, A2 ∈ A2} = [−A′′cx−∆′′|x|+ b′′c − δ′′, −A′′cx + ∆′′|x|+ b′′c + δ′′],

hence the inclusion (2.2) is equivalent to

−(∆′′ −∆′)|x| − (δ′′ − δ′) ≤ (A′c + A′′c )x− (b′c + b′′c ) ≤ (∆′′ −∆′)|x|+ (δ′′ − δ′),

which gives
|(A′c + A′′c )x− (b′c + b′′c )| ≤ (∆′′ −∆′)|x|+ (δ′′ − δ′). (2.3)

Now, taking into account that A′c+A′′c = Ac, b′c+b′′c = bc, ∆′′−∆′ = Z◦∆, and δ′′−δ′ = z◦δ,
we obtain (2.1). 2

In this way, some previously defined types of solutions become special cases of (Z, z)-
solutions, and their descriptions turn out to be special cases of Theorem 1. So we obtain

• weak solutions for Z = E, z = e (Theorem 2.9 in [2]),
• strong solutions for Z = −E, z = −e (Theorem 2.16 in [2]),
• tolerance solutions for Z = −E, z = e (Theorem 2.28 in [2]),
• control solutions for Z = E, z = −e (Theorem 2.29 in [2]).

This shows that Theorem 1 (though little known so far) indeed offers a unified view of
different types of solutions of interval linear equations. It could also be easily reformulated
for interval linear inequalities, but we refrain from it here.

3 History

S. P. Shary presented his idea of (Z, z)-solutions, which he then called “∀∃-solutions” (today
“AE-solutions”), at a conference in Wuppertal in 1995 and published it in [5]. His formu-
lation of Theorem 1 contained, however, interval arithmetic operations. A proof not using
these operations and based purely on the Oettli-Prager theorem was given in this author’s
letter to S. P. Shary and A. V. Lakeyev [4]. The final step towards utmost simplicity by
employing the Hadamard product was done by A. V. Lakeyev in [3]. Our definition using Z
and z instead of subsets of indices, as well as the proof, are new.
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