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1. Introduction
In this paper we are concerned with the problem of verification of linear (in)dependence of columns
of a matrix by means of finite precision arithmetic. That means, given a matrix A ∈ Fm×n, where F
is the set of floating-point numbers on a given computer, we wish to end up with statement

A has linearly independent columns
or

A has linearly dependent columns
and these assertions should hold as mathematical truths despite having been obtained by computation
in finite precision arithmetic. The third possible statement is then

No verified result
meaning that the obtained result could not be verified in the above sense.

While verification of linear independence poses no problem (Theorem 2), verification of linear
dependence is by no means easy. The clue to the solution of this problem consists in the use of a
verified pseudoinverse which, in turn, requires use of a verified singular value decomposition. In the
nutshell, the problem can be solved by finite precision means, but at the expense of employing heavy
machinery.

In Section 3 we start with the characterization of linear independence of columns by means
of the pseudoinverse matrix. This result is then employed in sufficient conditions for verified linear
independence (Theorem 2) and dependence (Theorem 3). In Theorem 4 we show how to find, in
case of linear dependence, a verified enclosure of a null vector of A, and in Theorem 5 we bring a
verified description of the whole null space N (A).
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2. Pseudoinverse
As it is well known [5], for each matrix A ∈ Rm×n there exists exactly one matrix A† ∈ Rn×m

satisfying

AA†A = A, (2.1)
A†AA† = A†, (2.2)
(A†A)T = A†A, (2.3)

(AA†)T = AA†. (2.4)

This matrix is called the pseudoinverse (or Moore-Penrose inverse) of A. If A has linearly indepen-
dent columns, then A† is given explicitly by

A† = (ATA)−1AT . (2.5)

The pseudoinverse of an A ∈ Rm×n belongs to Rn×m, but it may not be exactly representable in
Fn×m. To overcome this difficulty, we introduce the following notion. An n × m interval matrix
B = [B,B] = {B | B 6 B 6 B }, where inequalities are taken entrywise, is called a verified
enclosure of A† if B,B ∈ Fn×m and A† ∈ B holds. Verified pseudoinverse will turn out to be our
main tool for verification of linear dependence.

3. Auxiliary result
We suppose the following theorem to be known, but since we have not found it in standard textbooks,
we provide its proof here. I denotes the identity matrix.

Theorem 1. A matrix A ∈ Rm×n has linearly independent columns if and only if

A†A = I. (3.1)

Proof. If A has linearly independent columns, then (2.5) gives A†A = I . Conversely, if (3.1) holds,
then Ax = 0 implies x = A†Ax = 0, hence the columns of A are linearly independent. �

4. Verification of linear independence
Verification of linear independence is the easier of the two tasks. It is based on the following theorem.

Theorem 2. Let A ∈ Rm×n be given. If there exists a matrix R ∈ Rn×m such that

∥I −RA∥1 < 1, (4.1)

then A has linearly independent columns.

Proof. We have
RA = I − (I −RA)

and since ∥I − RA∥1 < 1, the matrix RA ∈ Rn×n is nonsingular ([4], Corollary 5.6.16). Hence if
Ax = 0, then RAx = 0 and nonsingularity of RA implies x = 0 which shows that the columns of
A are linearly independent. �

The choice of R in (4.1) is obvious. Since I − A†A = 0 in case of linear independence
(Theorem 1), we choose
R=pinv(A)

(the computed pseudoinverse of A). But in order that the result (linear independence) be verified we
must have the inequality (4.1) verified. This is done by computing the left-hand side of (4.1) in inter-
val arithmetic with outward rounding [1] as shown in the subfunction ind of the MATLAB/INTLAB
function lindep in Section 9.
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5. Verification of linear dependence
The method for verifying linear dependence described in the following Theorem 3 seems to be the
only one known so far.

Theorem 3. Let A ∈ Rm×n and let B be a verified enclosure of A† such that the interval matrix

C = I −BA = [C,C]

satisfies Cij > 0 or Cij < 0 for some i, j. Then A has linearly dependent columns.

Proof. Assume to the contrary that the columns of A are linearly independent. Since the matrix A†

belongs to B, we have, according to Theorem 1,

0 = I −A†A ∈ I −BA = C = [C,C],

hence
C 6 0 6 C

which contradicts the assumption that Cij > 0 or Cij < 0 for some i, j. �

Thus, to verify linear dependence of the columns of A by means of Theorem 3, we must
perform three steps: first, to find a verified enclosure B of A†; second, to compute C = I − BA
in interval arithmetic; and third, to check whether Cij > 0 or Cij < 0 holds for some i, j. Of these
three, the last two steps are trivial; so the most important part consists in finding a verified enclosure
of A†. This is done by VERSOFT’s [7] program verpinv.m [6] whose syntax is B=verpinv(A).
However, this program is still far from perfect as it sometimes fails; Section 6 below offers some
explanation of this behavior. It has been observed that failure occurs often when rank(A) 6 n− 2.
Thus, to avoid these situations, we proceed as follows. First we find by means of standard RREF
procedure a basis D of the range space of A, verify its full column rank according to Theorem 2, and
then we check linear dependence of columns of [D A•j ] for nonbasic columns A•j by Theorem 3.
This idea is embedded into the subfunction dep of the function lindep described in Section 9.

6. Premature termination of verpinv
The VERSOFT file verpinv available from [6] uses three methods for computing verified pseu-
doinverse performed in the interval arithmetic: the formula (2.5), Greville’s algorithm [3] and sin-
gular value decomposition [2]. Unfortunately, all three may fail, causing the failure of the lindep
procedure: the formula (2.5) fails when A has linearly dependent columns, and each of the other two
methods contains a statement of the form

if a>0
statement1

else
statement2

end

where a is a nonnegative scalar obtained in the course of previous computation. If a is a real number,
then this statement is perfectly feasible. However, if a is a real interval, say a = [0, 10−14], then
the verification program cannot decide which case occurs and the computation breaks down. This
is a common curse of verification programs where to the two classic types of output “A possesses
the property P ” and “A does not possess the property P ” we must add the third type “no verified
result”.
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7. Examples
A randomly generated m× n matrix with m > n is likely to have linearly independent columns:
>> m=200; n=100; rand(’state’,1); A=2*rand(m,n)-1; l=lindep(A)
l =

1

On the other hand, if m < n, then the columns are linearly dependent:
>> m=100; n=200; rand(’state’,2); A=2*rand(m,n)-1; l=lindep(A)
l =

0

Next consider matrices constructed by the statement
>> A=(reshape(1:nˆ2,n,n))’

i.e., satisfying A(i, j) = (i − 1)n + j for each i, j. Their structure can be clearly seen from the
particular case of n = 5:
>> n=5; A=(reshape(1:nˆ2,n,n))’
A =

1 2 3 4 5
6 7 8 9 10

11 12 13 14 15
16 17 18 19 20
21 22 23 24 25

These matrices satisfy rank(A) = 2 for each n > 2. The file lindep.m rightly verifies linear
dependence of columns for each n with 3 6 n 6 12:
>> n=12; A=(reshape(1:nˆ2,n,n))’; l=lindep(A)
l =

0

but it fails for n = 13:
>> n=13; A=(reshape(1:nˆ2,n,n))’; l=lindep(A)
l =

-1

Results of this type emphasize the necessity of further improvements in computation of verified
pseudoinverse, something this author has not been able to do so far.

8. Null space
If A has linearly dependent columns, then Ax = 0 for some x ̸= 0. Such an x may not be expressed
exactly in floating point in general, but a verified enclosure of it can be found.

Theorem 4. Under assumptions and notation of Theorem 3 the interval vector

x = C•j

encloses a point vector x ̸= 0 satisfying Ax = 0.

Proof. Define x = (I − A†A)•j = (I − A†A)ej . Then x ∈ (I − BA)•j = C•j = x, Ax =

(A−AA†A)ej = 0 by (2.1), and xi ̸= 0 because xi ∈ [Cij , Cij ] and 0 /∈ [Cij , Cij ]. �

We can even give a certain description of the whole null space

N (A) = {x | Ax = 0 }.
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Theorem 5. Under assumptions and notation of Theorem 3 there exists a point matrix C ∈ C such
that

N (A) = {Cy | y ∈ Rn }.

Proof. By Greville’s description [3], N (A) = { (I −A†A)y | y ∈ Rn }. Here for C = I −A†A we
have C ∈ I −BA = C, and we are done. �

9. The MATLAB file lindep.m
Here we list the MATLAB/INTLAB file lindep.m employed in previous computations.
function l=lindep(A) % Linear INDEPendence, LINear DEPendence
% l= 1: columns of A are verified linearly independent,
% l= 0: columns of A are verified linearly dependent,
% l=-1: no verified result.
% Requires INTLAB and VERSOFT to be installed under MATLAB.
l=ind(A); if l==1, return, end
l=dep(A); if l==0, return, end
l=-1;
function lind=ind(A) % linear INDependence
I=eye(size(A,2));
R=pinv(A); R=infsup(R,R);
G=I-R*A; n1=norm(G,1);
if n1.sup<1, lind=1; return, end
lind=-1;
function lind=dep(A) % linear DEPendence
lind=-1; [AR,K]=rref(A); if isempty(K), return, end
D=A(:,K); if ind(D)==-1, return, end
I=eye(length(K)+1);
for j=1:size(A,2)

if ˜any(K==j)
B=verpinv([D A(:,j)]); if isnan(B.inf(1,1)), return, end
C=I-B*[D A(:,j)];
if any(any(C.inf>0))||any(any(C.sup<0)), lind=0; return, end

end
end
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