A Theorem of the Alternatives for the Equation |Ax| - |B||x| = b

Jiri Rohn

Received: date / Accepted: date

Abstract A theorem of the alternatives for the equation |Ax| - |B||x| = b $(A, B \in \mathbb{R}^{n \times n}, b \in \mathbb{R}^n)$ is proved and several consequences are drawn. In particular, a class of matrices A, B is identified for which the equation has exactly 2^n solutions for each positive right-hand side b.

Keywords Absolute value equation \cdot triple absolute value equation \cdot alternatives \cdot solution set \cdot interval matrix \cdot regularity.

1 Introduction

We consider here the equation

$$|Ax| - |B||x| = b, (1)$$

where $A, B \in \mathbb{R}^{n \times n}$ and $b \in \mathbb{R}^n$, which we call a *triple absolute value equation*. This equation could also be written in the form

$$Ax| - C|x| = b,$$
$$C \ge 0,$$

but we prefer the one-line expression (1). As far as known to us, nobody has studied this equation as yet.

In the main result of this paper we show that for each $A, B \in \mathbb{R}^{n \times n}$ exactly one of the following two alternatives holds: (i) for each b > 0 the equation (1) has exactly 2^n solutions and the set $\{Ax; |Ax| - |B||x| = b\}$ intersects interiors of all orthants

J. Rohn

J. Rohn

Supported by the Czech Republic Grant Agency under grants 201/09/1957 and 201/08/J020, and by the Institutional Research Plan AV0Z10300504.

Institute of Computer Science, Czech Academy of Sciences, Prague, Czech Republic E-mail: rohn@cs.cas.cz

School of Business Administration, Anglo-American University, Prague, Czech Republic

of \mathbb{R}^n , (ii) the equation (1) has a nontrivial solution for some $b \leq 0$. In Corollary 1 we show that, even more, if the property mentioned in (i) holds for some $b_0 > 0$, then it is shared by any b > 0, and in Corollary 2 we prove that if A is nonsingular and the condition

$$\varrho(|A^{-1}||B|) < 1 \tag{2}$$

is satisfied (where ρ stands for the spectral radius), then (i) holds, so that for each b > 0 the equation (1) has exactly 2^n solutions. As it will be shown later, these results follow from necessary and/or sufficient conditions for regularity/singularity of interval matrices when applied to the interval matrix [A - |B|, A + |B|]. In turn, our results enable us to add two more such necessary and sufficient conditions to the list of forty of them surveyed in [11] (Proposition 1 below).

Nearest in form to the equation (1) is the *absolute value equation*

$$Ax + B|x| = b \tag{3}$$

which has been resently studied by Mangasarian [2], [3], [4], Mangasarian and Meyer [5], Prokopyev [7], and Rohn [10], [12]. There is, however, a big difference between these two equations: while the equation (3) has under the condition (2) exactly one solution for each b (as it follows from Proposition 4.2 in [10] since the condition (2) implies regularity of the interval matrix [A - |B|, A + |B|] as proved in [1]), the equation (1) under the same condition has exactly 2^n solutions for each b > 0. This sharp difference between both the equations is to be ascribed to the absence/presence of the absolute value of the term Ax.

The particular circumstances of discovery of the main theorem are briefly mentioned in the personal note in Section 6.

2 Notation

We use the following notation. Matrix inequalities, as $A \leq B$ or A < B, are understood componentwise. The absolute value of a matrix $A = (a_{ij})$ is defined by $|A| = (|a_{ij}|)$. The same notation also applies to vectors that are considered one-column matrices. For each $y \in \{-1, 1\}^n$ we denote

$$T_y = \text{diag}(y_1, \dots, y_n) = \begin{pmatrix} y_1 & 0 & \dots & 0 \\ 0 & y_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & y_n \end{pmatrix},$$

and $\mathbb{R}_y^n = \{x \ ; \ T_y x \ge 0\}$ is the orthant prescribed by the ± 1 -vector y. Notice that $T_y^{-1} = T_y$ for such a y. Given $A, B \in \mathbb{R}^{n \times n}$, the set

$$[A - |B|, A + |B|] = \{S; |S - A| \le |B|\}$$

is an interval matrix; it is called regular if each $S \in [A - |B|, A + |B|]$ is nonsingular, and it is said to be singular otherwise (i.e., if it contains a singular matrix).

3 Theorem of the alternatives

To simplify formulations, we introduce the following definition.

Definition 1 We say that the equation (1) is *exponentially solvable* for a particular right-hand side b if it has exactly 2^n solutions and the set

$$\{Ax; |Ax| - |B||x| = b\}$$
(4)

intersects interiors of all orthants of \mathbb{R}^n .

The following theorem is the main result of this paper.

Theorem 1 For each $A, B \in \mathbb{R}^{n \times n}$ exactly one of the following two alternatives holds:

- (i) the equation (1) is exponentially solvable for each b > 0,
- (ii) the equation (1) has a nontrivial solution for some $b \leq 0$.

Proof Consider the following two options for the interval matrix [A - |B|, A + |B|]:

(i') [A - |B|, A + |B|] is regular, (ii') [A - |B|, A + |B|] is singular.

We shall prove that the assertions (i), (ii) are equivalent to (i'), (ii'), respectively. Since exactly one of (i'), (ii') always holds, the same will be true for (i), (ii).

 $(i) \Rightarrow (i')$. Let (i) hold. Take any $b_0 > 0$, then, by the assumption (i), for each ± 1 -vector $y \in \mathbb{R}^n$ there exists a solution x_y of the equation $|Ax| - |B||x| = b_0$ such that $Ax_y \in \mathbb{R}^n_y$. Since x_y satisfies $|Ax_y| = |B||x_y| + b_0 > |B||x_y|$, the condition (v) of Theorem 3.1 in [9] is met and consequently the interval matrix [A - |B|, A + |B|] is regular.

 $(i') \Rightarrow (i)$. If (i') holds, then for each ± 1 -vector y the interval matrix

$$[A - | -T_y|B||, A + | -T_y|B||] = [A - |B|, A + |B|]$$

is regular, hence by Proposition 4.2 in [10] the equation

$$Ax - T_y|B||x| = T_y b \tag{5}$$

has a unique solution x_y . This x_y then satisfies

$$T_y A x_y - |B||x_y| = b, (6)$$

which implies

$$T_y A x_y = |B| |x_y| + b \ge b > 0, \tag{7}$$

hence Ax_y belongs to the interior of \mathbb{R}_y^n and $T_yAx_y = |Ax_y|$, which in view of (6) means that x_y is a solution of (1). Conversely, let x solve (1). Put $y_i = 1$ if $(Ax)_i \ge 0$ and $y_i = -1$ otherwise (i = 1, ..., n), then $T_yAx = |Ax|$, so that x is a solution of

$$T_yAx - |B||x| = b$$

and thus also of (5). Because of the above-stated uniqueness of solution of (5), this implies that $x = x_y$. In this way we have proved that the solution set of (1) consists precisely of the points x_y for all possible ± 1 -vectors $y \in \mathbb{R}^n$. Thus to prove that (1) has exactly 2^n solutions, it will suffice to show that all the x_y 's are mutually different. To this end, take two ± 1 -vectors y and y', $y \neq y'$. Then $y_i y'_i = -1$ for some i. From (7) it follows that $y_i(Ax_y)_i > 0$ and $y'_i(Ax_{y'})_i > 0$ and by multiplication $y_i(Ax_y)_i y'_i(Ax_{y'})_i > 0$, hence $(Ax_y)_i(Ax_{y'})_i < 0$, which clearly shows that $x_y \neq x_{y'}$.

(ii) \Leftrightarrow (ii'). Existence of a nontrivial solution of (1) for some $b \leq 0$ is equivalent to existence of a nontrivial solution of the inequality

$$Ax| \le |B||x|,\tag{8}$$

which, by Proposition 2.2 in [10], is in turn equivalent to singularity of the interval matrix [A - |B|, A + |B|].

This proves the theorem.

4 Consequences

We can draw some consequences from Theorem 1 and its proof.

Corollary 1 If the equation (1) is exponentially solvable for some $b_0 > 0$, then it is exponentially solvable for each b > 0.

Proof Indeed, in the proof of Theorem 1, implication "(i) \Rightarrow (i')", we showed that exponential solvability of the equation (1) for some $b_0 > 0$ implies regularity of [A - |B|, A + |B|] and thus, by "(i') \Rightarrow (i)", also exponential solvability for each b > 0.

Corollary 2 If A is nonsingular and

$$\varrho(|A^{-1}||B|) < 1 \tag{9}$$

holds, then the equation (1) is exponentially solvable for each b > 0.

Proof By the well-known Beeck's result in [1], the condition (9) implies regularity of the interval matrix [A - |B|, A + |B|] and thus, by the equivalence "(i) \Leftrightarrow (i')" established in the proof of Theorem 1, it also implies exponential solvability of (1) for each b > 0.

Corollary 3 If A is nonsingular and

$$\max_{i}(|A^{-1}||B|)_{jj} \ge 1 \tag{10}$$

holds, then the equation (1) is not exponentially solvable for any b > 0.

Proof It follows from part (iii) of Corollary 5.1 in [8] that the condition (10) implies singularity of the interval matrix [A - |B|, A + |B|], which, by the proof of Theorem 1 and by Corollary 1, precludes exponential solvability of (1) for any b > 0.

For $A, B \in \mathbb{R}^{n \times n}$, $b \in \mathbb{R}^n$, denote

$$X(A, B, b) = \{x; |Ax| - |B||x| = b\},\$$

i.e., the solution set of (1) (attention: not to be confused with (4)). Observe that if $x \in X(A, B, b)$, then $-x \in X(A, B, b)$, hence the solutions appear in X(A, B, b) in pairs (x, -x). Thus, unless b = 0, the cardinality of X(A, B, b), if finite, is even.

$$X(A, B, b) = \{ x_y ; y \in \{-1, 1\}^n \},\$$

where for each $y \in \{-1,1\}^n$, x_y is the unique solution of the absolute value equation

$$T_y A x - |B||x| = b. \tag{11}$$

Proof This has been proved in the "(i') \Rightarrow (i)" part of the proof of Theorem 1.

Corollary 5 Under the assumptions of Corollary 4, we have $x_{-y} = -x_y$ for each $y \in \{-1, 1\}^n$.

Proof Since x_y is a solution of (11), it follows that $-x_y$ solves the equation

$$T_{-y}Ax - |B||x| = b,$$

and in view of the uniqueness of solution of this equation we have that $x_{-y} = -x_y$. \Box

The equation (11) can be solved in a finite number of steps by a very efficient algorithm **absvaleqn** described in [12]. Corollary (5) reduces the number of x_y 's to be computed from 2^n to 2^{n-1} (e.g., it suffices to consider only the y's with $y_n = 1$).

Checking regularity of interval matrices is a co-NP-complete problem [6]. Forty necessary and sufficient regularity conditions were surveyed in [11]; the results of this paper enable us to add two more items to the list.

Proposition 1 For a square interval matrix $[A - \Delta, A + \Delta]$, the following assertions are equivalent:

(a) $[A - \Delta, A + \Delta]$ is regular,

(b) the equation

$$|Ax| - \Delta |x| = b \tag{12}$$

is exponentially solvable for each b > 0,

(c) the equation (12) is exponentially solvable for some right-hand side $b_0 > 0$.

Proof In the light of Theorem 1 and Corollary 1 we see that $(a) \Rightarrow (b) \Rightarrow (c) \Rightarrow (b) \Rightarrow (a)$ holds, which proves the mutual equivalence of all the assertions.

5 Conclusion

We have investigated the case of b > 0. For a general right-hand side b there seems not to be an easy clue to the cardinality of the solution set of (1). This should be a subject of further research.

6 Personal note

I am a little ashamed to admit that I discovered Theorem 1 during the Christmas Eve mass on December 24, 2006 in St Francis Church in Prague.

7 Acknowledgment

The author wishes to thank both referees for their constructive criticism which resulted in essential improvement of the text of the paper.

References

- Beeck, H.: Zur Problematik der Hüllenbestimmung von Intervallgleichungssystemen. In: K. Nickel (ed.) Interval Mathematics, Lecture Notes in Computer Science 29, pp. 150–159. Springer-Verlag, Berlin (1975)
- Mangasarian, O.: Absolute value equation solution via concave minimization. Optimization Letters 1(1), 3–8 (2007). DOI 10.1007/s11590-006-0005-6
- Mangasarian, O.: Absolute value programming. Computational Optimization and Applications 36(1), 43–53 (2007). DOI 10.1007/s10589-006-0395-5
- Mangasarian, O.L.: A Generalized Newton Method for Absolute Value Equations. Optimization Letters 3(1), 101–108 (2009). DOI 10.1007/s11590-008-0094-5
- Mangasarian, O.L., Meyer, R.R.: Absolute value equations. Linear Algebra and Its Applications 419(2–3), 359–367 (2006). DOI 10.1016/j.laa.2006.05.004
- Poljak, S., Rohn, J.: Checking robust nonsingularity is NP-hard. Mathematics of Control, Signals, and Systems 6, 1–9 (1993). DOI 10.1007/BF01213466
- Prokopyev, O.: On Equivalent Reformulations for Absolute Value Equations. Comput. Optim. Appl. 44(3), 363–372 (2009). DOI 10.1007/s10589-007-9158-1
- Rohn, J.: Systems of linear interval equations. Linear Algebra and Its Applications 126, 39–78 (1989). DOI 10.1016/0024-3795(89)90004-9
- Rohn, J.: Regularity of interval matrices and theorems of the alternatives. Reliable Computing 12, 99–105 (2006). DOI 10.1007/s11155-006-4877-z
- 10. Rohn, An J.: algorithm for solving the absolute value equa-Algebra tion. Electronic Journal of Linear 18, 589 - 599(2009).http://www.math.technion.ac.il/iic/ela/ela-articles/articles/vol18_pp589-599. pdf
- Rohn, J.: Forty necessary and sufficient conditions for regularity of interval matrices: A survey. Electronic Journal of Linear Algebra 18, 500-512 (2009). http://www.math.technion.ac.il/iic/ela/ela-articles/articles/vol18_pp500-512. pdf
- 12. Rohn, J.: An algorithm for solving the absolute value equation: An improvement. Technical Report 1063, Institute of Computer Science, Academy of Sciences of the Czech Republic, Prague (2010). http://uivtx.cs.cas.cz/~rohn/publist/absvaleqnreport.pdf