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A Theorem of the Alternatives for the Equation
|Az| — [B||z| = b

Jiri Rohn

Received: date / Accepted: date

Abstract A theorem of the alternatives for the equation |Az| — |B||z| = b (A, B €
R™ ™ b € R™) is proved and several consequences are drawn. In particular, a class
of matrices A, B is identified for which the equation has exactly 2" solutions for each
positive right-hand side b.
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1 Introduction

We consider here the equation
|Az| — |B||z| = b, (1)

where A, B € R™ "™ and b € R", which we call a triple absolute value equation. This
equation could also be written in the form

|Az| — C|z| = b,

>0,

but we prefer the one-line expression (1). As far as known to us, nobody has studied
this equation as yet.

In the main result of this paper we show that for each A, B €
of the following two alternatives holds: (i) for each b > 0 the equation (1) has exactly
2™ solutions and the set { Az ; |Az| — |Bl|z| = b} intersects interiors of all orthants

R™*"™ exactly one

Supported by the Czech Republic Grant Agency under grants 201/09/1957 and 201,/08/J020,
and by the Institutional Research Plan AV0Z10300504.

J. Rohn
Institute of Computer Science, Czech Academy of Sciences, Prague, Czech Republic
E-mail: rohn@cs.cas.cz

J. Rohn
School of Business Administration, Anglo-American University, Prague, Czech Republic



of R™, (ii) the equation (1) has a nontrivial solution for some b < 0. In Corollary 1 we
show that, even more, if the property mentioned in (i) holds for some by > 0, then it
is shared by any b > 0, and in Corollary 2 we prove that if A is nonsingular and the
condition

o(|ATH|B]) < 1 (2)

is satisfied (where p stands for the spectral radius), then (i) holds, so that for each
b > 0 the equation (1) has exactly 2" solutions. As it will be shown later, these results
follow from necessary and/or sufficient conditions for regularity /singularity of interval
matrices when applied to the interval matrix [A — |B|, A + |B|]. In turn, our results
enable us to add two more such necessary and sufficient conditions to the list of forty
of them surveyed in [11] (Proposition 1 below).

Nearest in form to the equation (1) is the absolute value equation

Az + Blz|=1b (3)

which has been resently studied by Mangasarian [2], [3], [4], Mangasarian and Meyer
[5], Prokopyev [7], and Rohn [10], [12]. There is, however, a big difference between these
two equations: while the equation (3) has under the condition (2) exactly one solution
for each b (as it follows from Proposition 4.2 in [10] since the condition (2) implies
regularity of the interval matrix [A — |BJ, A + |B|] as proved in [1]), the equation (1)
under the same condition has exactly 2" solutions for each b > 0. This sharp difference
between both the equations is to be ascribed to the absence/presence of the absolute
value of the term Azx.

The particular circumstances of discovery of the main theorem are briefly mentioned
in the personal note in Section 6.

2 Notation

We use the following notation. Matrix inequalities, as A < B or A < B, are understood
componentwise. The absolute value of a matrix A = (a;;) is defined by |A| = (|a;;|).
The same notation also applies to vectors that are considered one-column matrices.
For each y € {—1,1}" we denote

yp 0 ... 0

. Oyg...O
Ty:dlag(yla'“,yn): .. . )

0 0 ...yn

and Ry = {z ; T,z > 0} is the orthant prescribed by the +1-vector y. Notice that
ngl =T, for such a y. Given A, B € R"*", the set

[A—|Bl,A+|B|]={S5;[S— Al <|B|}

is an interval matrix; it is called regular if each S € [A — |B|, A + |B|] is nonsingular,
and it is said to be singular otherwise (i.e., if it contains a singular matrix).



3 Theorem of the alternatives

To simplify formulations, we introduce the following definition.

Definition 1 We say that the equation (1) is ezponentially solvable for a particular
right-hand side b if it has exactly 2" solutions and the set

{Az; [Az| — [Blz[ = b} (4)
intersects interiors of all orthants of R".
The following theorem is the main result of this paper.

Theorem 1 For each A, B € R™*"™ exactly one of the following two alternatives holds:

(i) the equation (1) is exzponentially solvable for each b > 0,
(i) the equation (1) has a nontrivial solution for some b < 0.

Proof Consider the following two options for the interval matrix [A — |B|, A + |B|]:

(") [A—|B|,A+|B|] is regular,
(i) [A—|B|, A+ |B]] is singular.

We shall prove that the assertions (i), (ii) are equivalent to (i’), (ii’), respectively. Since
exactly one of (i’), (ii’) always holds, the same will be true for (i), (ii).

(i)=(1). Let (i) hold. Take any bg > 0, then, by the assumption (i), for each £1-
vector y € R™ there exists a solution zy of the equation |Az| — |B||z| = by such that

Azxy € Ry. Since zy satisfies |Azxy| = |B||zy| + bo > |B||zy|, the condition (v) of
Theorem 3.1 in [9] is met and consequently the interval matrix [A — |B|, A + |B]] is
regular.

(i’)=(). If (’) holds, then for each £1-vector y the interval matrix
[A—[=Ty|Bll, A+ |- Ty|Bl[] = [A - |B|, A+ |B]
is regular, hence by Proposition 4.2 in [10] the equation
Az —T,[Blla| = Tyb (5)
has a unique solution xy. This z then satisfies
TyAzy — |Bllzy| = b, (6)

which implies
TyAzy = |Bl|lzy| +b>b> 0, (7)

hence Az, belongs to the interior of Ry and TyAzy = |Azy|, which in view of (6)
means that zy is a solution of (1). Conversely, let x solve (1). Put y; = 1 if (Az); >0
and y; = —1 otherwise (i = 1,...,n), then T,y Az = |Az|, so that z is a solution of

TyAxz — |Bllz| =b

and thus also of (5). Because of the above-stated uniqueness of solution of (5), this
implies that © = zy. In this way we have proved that the solution set of (1) consists
precisely of the points xy for all possible +1-vectors y € R™. Thus to prove that
(1) has exactly 2™ solutions, it will suffice to show that all the xy’s are mutually



different. To this end, take two +l-vectors y and ¢', y # 3. Then y;y; = —1 for
some 7. From (7) it follows that y;(Azy); > 0 and y;(Az,/); > 0 and by multiplication
yi(Amy)iyg(Amy/)i > 0, hence (Azy);(Ax, ); <0, which clearly shows that xy # x,/.

(ii)<(ii’). Existence of a nontrivial solution of (1) for some b < 0 is equivalent to
existence of a nontrivial solution of the inequality

|Az| < |B||xl, (®)
which, by Proposition 2.2 in [10], is in turn equivalent to singularity of the interval

matrix [A — |B|, A+ |B|].
This proves the theorem. a

4 Consequences

We can draw some consequences from Theorem 1 and its proof.

Corollary 1 If the equation (1) is exponentially solvable for some by > 0, then it is
exponentially solvable for each b > 0.

Proof Indeed, in the proof of Theorem 1, implication “(i)=-(i’)”, we showed that
exponential solvability of the equation (1) for some by > 0 implies regularity of
[A —|B|, A+ |B|] and thus, by “(i’)=-(i)”, also exponential solvability for each b > 0.

O

Corollary 2 If A is nonsingular and
o(ATY|B]) < 1 (9)
holds, then the equation (1) is exponentially solvable for each b > 0.

Proof By the well-known Beeck’s result in [1], the condition (9) implies regularity of the
interval matrix [A —|B|, A+ |B|] and thus, by the equivalence “(i)<(i’)” established in
the proof of Theorem 1, it also implies exponential solvability of (1) for each b > 0. 0O

Corollary 3 If A is nonsingular and

max(| A~ B])j; > 1 (10)

holds, then the equation (1) is not exponentially solvable for any b > 0.

Proof It follows from part (iii) of Corollary 5.1 in [8] that the condition (10) implies
singularity of the interval matrix [A — |B|, A + | B|], which, by the proof of Theorem 1
and by Corollary 1, precludes exponential solvability of (1) for any b > 0. O

For A,B € R™*" b e R", denote
X(A,B,b) ={z; |[Az| — [Bllz] = b},
i.e., the solution set of (1) (attention: not to be confused with (4)). Observe that if

xz € X (A, B,b), then —x € X(A, B,b), hence the solutions appear in X(A, B,b) in
pairs (z, —z). Thus, unless b = 0, the cardinality of X (A, B,b), if finite, is even.



Corollary 4 If the equation |Ax| — |Bllx| = by is exponentially solvable for some
bo > 0, then for each b > 0 we have

X(A7B7b) = {$y§ ye {_lvl}n}7

where for each y € {—1,1}", xy is the unique solution of the absolute value equation

TyAz — |Bl||z| =b. (11)
Proof This has been proved in the “(i’)=-(i)” part of the proof of Theorem 1. ad
Corollary 5 Under the assumptions of Corollary 4, we have x_y = —xy for each

ye{-1,1}".
Proof Since xy is a solution of (11), it follows that —zy solves the equation
T, Az — |Bljz| = b,
and in view of the uniqueness of solution of this equation we have that x_, = —xy. 0O

The equation (11) can be solved in a finite number of steps by a very efficient
algorithm absvaleqn described in [12]. Corollary (5) reduces the number of zy’s to be
computed from 2" to gn—l (e.g., it suffices to consider only the y’s with yn, = 1).

Checking regularity of interval matrices is a co-NP-complete problem [6]. Forty
necessary and sufficient regularity conditions were surveyed in [11]; the results of this
paper enable us to add two more items to the list.

Proposition 1 For a square interval matriz [A — A, A+ A], the following assertions

are equivalent:

(a) [A— A, A+ A] is regular,
(b) the equation
|Az| — Alz| = b (12)

is exponentially solvable for each b > 0,
(c) the equation (12) is exponentially solvable for some right-hand side by > 0.

Proof In the light of Theorem 1 and Corollary 1 we see that (a)=(b)=-(c)=-(b)=(a)
holds, which proves the mutual equivalence of all the assertions. a
5 Conclusion

We have investigated the case of b > 0. For a general right-hand side b there seems not
to be an easy clue to the cardinality of the solution set of (1). This should be a subject
of further research.

6 Personal note

I am a little ashamed to admit that I discovered Theorem 1 during the Christmas Eve
mass on December 24, 2006 in St Francis Church in Prague.
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