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Abstract We present a sufficient regularity condition for interval matrices which gen-

eralizes two previously known ones. It is formulated in terms of positive definiteness

of a certain point matrix, and can also be used for checking positive definiteness of

interval matrices. Comparing it with Beeck’s strong regularity condition, we show by

counterexamples that none of the two conditions is more general than the other one.

Keywords Interval matrix · regularity condition · positive definiteness.

1 Introduction and notation

A square interval matrix

A = [Ac −∆, Ac + ∆] = {A | Ac −∆ ≤ A ≤ Ac + ∆ }

is called regular if each A ∈ A is nonsingular, and is said to be singular otherwise (i.e.,

if it contains a singular matrix). The problem of checking regularity of interval matrices

is known to be NP-hard [6], which, roughly said, means that existence of a polynomial-

time algorithm for its solution is very unlikely because it would imply existence of

polynomial-time algorithms for thousands of so-called NP-complete problems [3] for

none of which such a polynomial-time algorithm has been found so far despite immense

efforts of thousands of computer sciencists over the last 40 years. And indeed, forty
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necessary and sufficient regularity conditions have been found so far [9], all of which

exhibit, in some form or another, exponential behavior. This underlines the importance

of studying sufficient regularity conditions.

In view of what has been said above, one could expect existence of many sufficient

regularity conditions. But, surprisingly, the converse is true: only three of them, listed

below, are known, at least to these authors.

Theorem 1 Each of the three conditions implies regularity of [Ac −∆, Ac + ∆]:

(i) %(|A−1
c |∆) < 1,

(ii) ‖∆‖2 < σmin(Ac),

(iii) the matrix AT
c Ac−‖∆T ∆‖I is positive definite for some consistent matrix norm ‖·‖.

The condition (i) is due to Beeck [1], (ii) is due to Rump [10, Thm. 1.8], and (iii) is

due to Rex and Rohn [7, Thm. 5.1]. In (i) % denotes the spectral radius, in (ii) σmin is

the minimum singular value, and

‖A‖2 = max
‖x‖2=1

‖Ax‖2 = σmax(A) =
√

λmax(AT A),

where λmax, σmax denote the maximum eigenvalue and maximum singular value, re-

spectively. Under a consistent matrix norm in (iii) we understand a matrix norm sat-

isfying ‖AB‖ ≤ ‖A‖‖B‖ for each A, B; I denotes the identity matrix of the respective

size. We shall later use the following well-known relationship (to be found e.g. in Horn

and Johnson [4]).

Theorem 2 For each rectangular matrix A and each consistent matrix norm ‖·‖ there

holds ‖A‖22 ≤ ‖AT A‖.

The following important characterization of singularity of interval matrices is a conse-

quence of the Oettli-Prager theorem [5]; the currently used version can be found e.g.

in [2, Thm. 2.9].

Theorem 3 An interval matrix [Ac−∆, Ac+∆] is singular if and only if the inequality

|Acx| ≤ ∆|x|

has a nontrivial solution.

Since 0 ≤ a ≤ b implies ‖a‖2 ≤ ‖b‖2, we have this corollary.

Corollary 1 If an interval matrix [Ac − ∆, Ac + ∆] is singular, then there exists a

vector x 6= 0 satisfying

‖Acx‖2 ≤ ‖∆|x|‖2. (1)

In fact the condition (iii) of Theorem 1 represents infinitely many conditions depending

on the choice of the consistent norm. It is our goal to show that (iii) can be specified in

such a way that the resulting condition generalizes not only all the former conditions

(iii), but also the condition (ii).
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2 New sufficient regularity condition

In this section we present the main result of this paper. The following theorem shows

that regularity of A can be described in terms of positive definiteness of the matrix (2).

Theorem 4 Let the matrix

AT
c Ac − ‖∆‖22I (2)

be positive definite. Then [Ac −∆, Ac + ∆] is regular.

Proof Assume to the contrary that [Ac − ∆, Ac + ∆] is singular. Then Corollary 1

implies existence of some x0 6= 0 such that

xT
0 AT

c Acx0 = ‖Acx0‖22 ≤ ‖∆|x0|‖22 ≤ ‖∆‖22(xT
0 x0),

hence we have

xT
0 (AT

c Ac − ‖∆‖22I)x0 ≤ 0

which means that the matrix (2) is not positive definite, a contradiction. ut

3 New condition as a generalization of two older ones

In this section we show that Theorem 4 offers a unified view of two earlier published

results. It will be shown that it generalizes not only the regularity condition due to

Rump [10], but also all the former regularity conditions due to Rex and Rohn [7].

Theorem 5 If

‖∆‖2 < σmin(Ac)

holds, then the matrix

AT
c Ac − ‖∆‖22I

is positive definite.

Proof Assume to the contrary that the matrix AT
c Ac − ‖∆‖22I is not positive definite,

then there exists an x0 6= 0 satisfying

xT
0 (AT

c Ac − ‖∆‖22I)x0 ≤ 0

which can be normalized so that ‖x0‖2 = 1. Consequently

σ2
min(Ac) = λmin(AT

c Ac) = min
‖x‖2=1

xT AT
c Acx ≤ xT

0 AT
c Acx0 ≤ ‖∆‖22,

hence

σmin(Ac) ≤ ‖∆‖2,

which is a contradiction. ut

Theorem 6 If the matrix

AT
c Ac − ‖∆T ∆‖I (3)

is positive definite for some consistent matrix norm ‖ · ‖, then the matrix

AT
c Ac − ‖∆‖22I (4)

is positive definite.
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Proof Let (3) be positive definite for some consistent matrix norm. Now using Theo-

rem 2, for each x 6= 0 we have

xT (AT
c Ac − ‖∆‖22I)x = xT AT

c Acx− ‖∆‖22‖x‖22
≥ xT AT

c Acx− ‖∆T ∆‖‖x‖22
≥ xT (AT

c Ac − ‖∆T ∆‖I)x > 0,

so that the matrix (4) is positive definite and the proof is complete. ut

Next we employ the sufficient regularity condition of Theorem 4 for checking positive

definiteness of interval matrices.

4 Positive definiteness of interval matrices

Definition 1 A square interval matrix A is called symmetric if AT = A, where

AT = {AT | A ∈ A}.

It can be easily seen that A = [Ac − ∆, Ac + ∆] is symmetric if and only if both

Ac and ∆ are symmetric. But, generally, a symmetric interval matrix may contain

nonsymmetric point matrices as well.

Definition 2 A symmetric interval matrix is said to be positive definite if each sym-

metric A ∈ A is positive definite.

Now we have this characterization.

Theorem 7 A symmetric interval matrix A = [Ac −∆, Ac + ∆] is positive definite if

and only if

xT Acx− |x|T ∆|x| > 0 (5)

holds for each x 6= 0.

Proof First we prove that if (5) holds, then each symmetric A ∈ A is positive definite.

We show that for each A ∈ A and each x 6= 0 there holds

xT Ax ≥ xT Acx− |x|T ∆|x|.

Assume to the contrary that

xT
0 A0x0 < xT

0 Acx0 − |x0|T ∆|x0|

for some A0 ∈ A and x0 6= 0. This would imply

|x0|T ∆|x0| < xT
0 (Ac −A0)x0 ≤ |x0|T |Ac −A0||x0| ≤ |x0|T ∆|x0|,

a contradiction. Hence the interval matrix A is positive definite.

Conversely, we are to prove that positive definiteness of all symmetric matrices

A ∈ A implies that (5) holds for each x 6= 0. So let x 6= 0 and define a diagonal matrix

T as follows: Tii = 1 if xi ≥ 0, and Tii = −1 otherwise (i = 1, . . . , n), then Tx = |x|,
and let A∗ = Ac − T∆T . Then A∗ is symmetric because Ac, ∆, and T are symmetric,

and

|A∗ −Ac| = |T∆T | = ∆,
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which means that A∗ ∈ A, so that A∗ is positive definite. Now we have

0 < xT A∗x = xT (Ac − T∆T )x = xT Acx− xT T∆Tx = xT Acx− |x|T ∆|x|,

which was to be proved. ut

The proof also yields the following result.

Theorem 8 If a symmetric interval matrix A is positive definite, then

xT Ax > 0

holds for each nonsymmetric A ∈ A and each x 6= 0.

Proof If A is positive definite, according to Theorem 7, (5) holds, and it was shown

in the first part of its proof that this implies xT Ax > 0 for each A ∈ A and each

x 6= 0. Let us emphasize that symmetry of A was not assumed in the first part of the

proof. ut

Hence, nonsymmetric matrices are also “positive definite” except that the term does

not apply to them. Now, as soon as we have a tool for checking regularity we can use

it for checking positive definiteness of interval matrices. The following link between

positive definiteness and regularity of interval matrices was established in [8, Thm. 3].

Theorem 9 A symmetric interval matrix [Ac −∆, Ac + ∆] is positive definite if and

only if it is regular and Ac is positive definite.

Using this link, we can turn our sufficient regularity condition into a sufficient positive

definiteness condition.

Theorem 10 Let [Ac − ∆, Ac + ∆] be symmetric and let both the matrices Ac and

AT
c Ac − ‖∆‖22I be positive definite. Then [Ac −∆, Ac + ∆] is positive definite.

Proof According to Theorem 4 positive definiteness of AT
c Ac−‖∆‖22I guarantees that

[Ac −∆, Ac + ∆] is regular. Also, Ac is positive definite. Now using Theorem 9 gives

that [Ac −∆, Ac + ∆] is also positive definite, which was to be proved. ut

That means, checking the two mentioned point matrices for positive definiteness suf-

fices to verify positive definiteness of the whole interval matrix. So far, we have studied

regularity and positive definiteness of interval matrices. These results will now be uti-

lized to prove the last result of this paper. First we prepare the stage by proving this

corollary.

Corollary 2 An interval matrix of the form [AT
c Ac−∆T ∆, AT

c Ac +∆T ∆] is positive

definite if and only if

‖Acx‖2 > ‖∆|x|‖2 (6)

holds for each x 6= 0.

Proof Applying Theorem 7 to the interval matrix [AT
c Ac − ∆T ∆, AT

c Ac + ∆T ∆] we

obtain that it is positive definite if and only if

xT AT
c Acx− |x|T ∆T ∆|x| > 0
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holds for each x 6= 0. Since

xT AT
c Acx− |x|T ∆T ∆|x| = (Acx)T (Acx)− (∆|x|)T (∆|x|) = ‖Acx‖22 − ‖∆|x|‖22,

this implies that the above condition is equivalent to

‖Acx‖2 > ‖∆|x|‖2

for each x 6= 0. So the proof is complete. ut

The result is clear: relations (1) and (6) contradict each other. This contradiction leads

us to our last result.

Theorem 11 If A = [AT
c Ac−∆T ∆, AT

c Ac + ∆T ∆] is regular, then [Ac−∆, Ac + ∆]

is also regular.

Proof Regularity of A implies that each A ∈ A is nonsingular. So AT
c Ac is nonsingular.

Also it is obvious that AT
c Ac is positive definite. Thus Theorem 9 gives that A is

positive definite, hence (6) holds by Corollary 2 for each x 6= 0. Now assume to the

contrary that [Ac − ∆, Ac + ∆] is singular. Then (1) holds by Corollary 1 for some

x0 6= 0, a contradiction. This contradiction shows that [Ac −∆, Ac + ∆] is regular as

well. ut

5 Comparison with the strong regularity condition

In Section 3 we proved that our new sufficient condition of Theorem 4 generalizes

the earlier sufficient conditions (ii) and (iii) of Theorem 1. Finally we compare it

with Beeck’s condition (i) (also called the strong regularity condition) and we show

by two counterexamples computed in MATLAB that neither of the two conditions is a

generalization of the other one. In both examples we use rand(’state’,i) (with i = 21

in the first one and i = 72 in the second one), so that the data may be reproduced in

full precision.

n=3; rand(’state’,21); Ac=2*rand(n,n)-1; Delta=(1/n)*rand(n,n);

A=Ac’*Ac-norm(Delta,2)^2*eye(size(Ac,1)); midrad(Ac,Delta)

rho=max(abs(eig(abs(inv(Ac))*Delta))), eiv=min(eig(A))

intval ans =

[ 0.5247, 0.6063] [ 0.5343, 0.5599] [ -0.6093, -0.5652]

[ 0.6003, 1.2387] [ 0.4443, 0.5948] [ 0.0391, 0.2357]

[ -0.7952, -0.5000] [ -0.1003, 0.1598] [ 0.1859, 0.6221]

rho =

0.9711

eiv =

-0.0273

Here %(|A−1
c |∆) = 0.9711 < 1 and λmin(AT

c Ac − ‖∆‖22I) = −0.0273 < 0, hence the

strong regularity condition is satisfied whereas the matrix AT
c Ac−‖∆‖22I is not positive

definite.
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n=3; rand(’state’,72); Ac=2*rand(n,n)-1; Delta=(1/n)*rand(n,n);

A=Ac’*Ac-norm(Delta,2)^2*eye(size(Ac,1)); midrad(Ac,Delta)

rho=max(abs(eig(abs(inv(Ac))*Delta))), eiv=min(eig(A))

intval ans =

[ -0.6089, -0.2581] [ -1.2267, -0.7475] [ -0.5973, -0.2492]

[ -0.0397, 0.1292] [ -0.6346, -0.0022] [ 0.3064, 0.8378]

[ -0.9808, -0.5854] [ 0.6140, 1.1957] [ 0.5602, 0.6420]

rho =

1.0254

eiv =

0.0321

Here %(|A−1
c |∆) = 1.0254 > 1 and λmin(AT

c Ac − ‖∆‖22I) = 0.0321 > 0, hence the

strong regularity condition is violated whereas the matrix AT
c Ac − ‖∆‖22I is positive

definite.

These results finally show that neither of the two conditions can be replaced by the

other one, so that we recommend them to be used in conjunction.
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