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Abstract. A system of linear interval equations is called solvable if each system of linear
equations contained therein is solvable. In the main result of this paper it is proved that solvability of
a general rectangular system of linear interval equations can be characterized in terms of nonnegative
solvability of a finite number of systems of linear equations which, however, is exponential in matrix
size; the problem is proved to be NP-hard. It is shown that three earlier published results are
consequences of the main theorem, which is compared with its counterpart valid for linear interval
inequalities that turn out to be much less difficult to solve.
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1. Introduction. Let A = [A,A] = {A; A ≤ A ≤ A} be an m × n interval
matrix and b = [b, b] = {b; b ≤ b ≤ b} an m-dimensional interval vector (inequalities
are taken componentwise and it is assumed that A ≤ A and b ≤ b, so that both sets
are nonempty). A system of linear interval equations, formally written as

Ax = b,(1)

is defined to be the family of all systems of linear equations

Ax = b(2)

with data satisfying

A ∈ A, b ∈ b.(3)

During approximately the last 35 years, much attention has been paid to systems of
linear interval equations (1) with square interval matrices (cf., e.g., the monographs by
Alefeld and Herzberger [1], Neumaier [4], Kreinovich et al. [3]). On the contrary, the
general rectangular case has been much less studied and remains much less understood.

In this paper we raise the question of solvability of general systems of linear inter-
val equations with rectangular matrices. A system (1) is called solvable if each system
in the family (2), (3) is solvable (i.e., has a solution). The reasons for introducing
this property are obvious: assuming we are interested in solvability of a linear system
A0x = b0, whose data A0, b0 are not known exactly but only known to belong to A
and b, respectively, we can be sure that the system A0x = b0 is solvable only if each
system (2) with data satisfying (3) possesses this property.

Except for the trivial case of A = A and b = b, the family (2), (3) consists
of infinitely many linear systems. In the main result of this paper (Theorem 3) we
prove that a system (1) is solvable if and only if a finite number of linear systems are
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nonnegatively solvable (i.e., have nonnegative solutions). These systems are formed
in the following way: For each i ∈ {1, . . . ,m}, the ith equation of such a system is
either of the form

(Ax1 −Ax2)i = bi(4)

or of the form

(Ax1 −Ax2)i = bi.(5)

Since for each of the m equations we have two options to choose from, there are
altogether 2m linear systems of this form in general (notice that the matrix of each
such system is of size m × 2n). But if the ith rows of A and A are equal and if
bi = bi, then (4) and (5) coincide. Hence the exact number of mutually different
linear systems to be solved is 2q, where q is the number of nonzero rows of the matrix
(A−A, b− b). This shows that the characterization, although generally exponential,
can be of practical use for problems with moderate values of q.

As shown in section 3, the proof of this result is nontrivial and relies on the
Farkas lemma and on the Oettli–Prager theorem. In section 4 we show that the main
result offers a unified view of three different, earlier results published independently:
characterization of nonnegative solvability of (1) (Theorem 4), characterization of
regularity of interval matrices (Theorem 5), and the convex-hull theorem (Theorem 6).
Next it is shown that the problem of checking solvability of linear interval equations is
NP-hard (Theorem 7); this explains the exponentiality inherent in formulation of the
main result. Finally, we compare the characterization of solvability of linear interval
equations in Theorem 3 with that of linear interval inequalities. Unlike the case of
exact data, these two problems turn out to be of different complexity since solvability
of a system of linear interval inequalities is characterized by solvability of one system
of linear inequalities only (Theorem 8). A brief discussion of the reasons for this
difference concludes the paper.

Throughout the paper we shall use the following notation. For an interval matrix
A = [A,A] we define

Ac = 1
2 (A + A)

(the center matrix) and

∆ = 1
2 (A−A)

(the radius matrix). Then A = Ac − ∆ and A = Ac + ∆, so that we also can write
A = [Ac − ∆, Ac + ∆]. Similarly, for the right-hand side b = [b, b], setting

bc = 1
2 (b + b)

and

δ = 1
2 (b− b),

we have b = [bc − δ, bc + δ]. This form of expressing the bounds turns out to be more
useful, mainly due to the Oettli–Prager description of the solution set of (1) (Theorem
2 below). For a vector x = (xi), its absolute value is defined by |x| = (|xi|); ConvX
denotes the convex hull of X. We define

Ym = {y ∈ R
m; yj ∈ {−1, 1} for each j};
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i.e., Ym is the set of all ±1-vectors in R
m; its cardinality is obviously 2m. Finally, for

each y ∈ Ym we denote

Ty = diag(y1, . . . , ym) =




y1 0 . . . 0
0 y2 . . . 0
...

...
. . .

...
0 0 . . . ym


 .

Notice that Ac − Ty∆ ∈ A, Ac + Ty∆ ∈ A, and bc + Tyδ ∈ b for each y ∈ Ym (these
quantities appear in formulation of the main result, equation (8) below).

2. Preliminaries. In order to keep the paper self-contained, we give here explicit
formulations of two well-known results that will be used in the proof of the main
theorem. The first is the Farkas lemma.

Lemma 1 (Farkas [2]). Let A ∈ R
m×n and b ∈ R

m. Then the system

Ax = b,

x ≥ 0,

has a solution if and only if each p ∈ R
m with AT p ≥ 0 satisfies bT p ≥ 0.

Our second auxiliary result is the Oettli–Prager theorem. If A = [Ac−∆, Ac+∆]
is an m×n interval matrix and b = [bc−δ, bc +δ] is an m-dimensional interval vector,
then the solution set of the system of linear interval equations

Ax = b

is defined by

X = {x; Ax = b for some A ∈ A, b ∈ b}.(6)

The Oettli–Prager theorem gives a description of the solution set by means of a certain
nonlinear inequality.

Theorem 2 (Oettli and Prager [5]). We have

X = {x; |Acx− bc| ≤ ∆|x| + δ}.(7)

Hence, if x satisfies the inequality in (7), then Ax = b for some A ∈ A and b ∈ b.
In fact, A and b can be explicitly expressed in terms of x (see the proof of Theorem
2.1 in [8]), but we shall not need it in this paper.

3. Solvability. In this section we present the main result of this paper, a char-
acterization of solvability of linear interval equations defined in the following way. Let
A be an m× n interval matrix and b an m-dimensional interval vector. The system
of linear interval equations Ax = b is said to be solvable if each system Ax = b with
A ∈ A, b ∈ b has a solution.

Except for the trivial case ∆ = 0 and δ = 0, the family Ax = b consists of
infinitely many systems. Yet the following theorem shows that solvability of Ax = b
can be characterized in terms of nonnegative solvability of a finite number of linear
systems, although this number is generally exponential in matrix size.
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Theorem 3. A system of linear interval equations Ax = b is solvable if and
only if for each y ∈ Ym the system

(Ac − Ty∆)x1 − (Ac + Ty∆)x2 = bc + Tyδ,(8)

x1 ≥ 0, x2 ≥ 0,(9)

has a solution x1
y, x

2
y. Moreover, if this is the case, then for each A ∈ A, b ∈ b the

system Ax = b has a solution in the set

Conv{x1
y − x2

y; y ∈ Ym}.
Proof. “Only if”: Let Ax = b be solvable. Assume to the contrary that (8), (9)

does not have a solution for some y ∈ Ym. Then the Farkas lemma implies existence
of a p ∈ R

m satisfying

(Ac − Ty∆)T p ≥ 0,(10)

(Ac + Ty∆)T p ≤ 0,(11)

(bc + Tyδ)T p < 0.(12)

Now (10) and (11) together give

∆TTyp ≤ AT
c p ≤ −∆TTyp,

hence

|AT
c p| ≤ −∆TTyp = | − ∆TTyp| ≤ ∆T |p|,

and the Oettli–Prager theorem as applied to the system [AT
c −∆T , AT

c +∆T ]z = [0, 0]
shows that there exists a matrix A ∈ A such that

AT p = 0.(13)

In light of the Farkas lemma, (13) and (12) mean that the system

Ax = bc + Tyδ

has no solution, which contradicts our assumption since A ∈ A and bc + Tyδ ∈ b.
“If”: Conversely, let for each y ∈ Ym the system (8), (9) have a solution x1

y, x2
y.

Let A ∈ A, b ∈ b. To prove that the system Ax = b has a solution, we first show that
TyAxy ≥ Tyb holds for each y ∈ Ym, where xy = x1

y − x2
y. Thus let y ∈ Ym. Then we

have

Ty(Axy − b) = Ty(Acxy − bc) + Ty(A−Ac)xy + Ty(bc − b)

≥ Ty(Acxy − bc) − ∆|xy| − δ

since |Ty(A − Ac)xy| ≤ ∆|xy|, which implies Ty(A − Ac)xy ≥ −∆|xy|, and similarly
|Ty(bc − b)| ≤ δ implies Ty(bc − b) ≥ −δ; thus

Ty(Axy − b) ≥ Ty(Ac(x
1
y − x2

y) − bc) − ∆|x1
y − x2

y| − δ

≥ Ty(Ac(x
1
y − x2

y) − bc) − ∆(x1
y + x2

y) − δ

= Ty((Ac − Ty∆)x1
y − (Ac + Ty∆)x2

y − (bc + Tyδ))

= 0
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since x1
y, x2

y solve (8), (9). In this way we have proved that for each y ∈ Ym, xy

satisfies

TyAxy ≥ Tyb.(14)

Using (14), we shall next prove that the system of linear equations

∑
y∈Ym

λyAxy = b,(15)

∑
y∈Ym

λy = 1,(16)

has a solution λy ≥ 0, y ∈ Ym. In view of the Farkas lemma, it suffices to show that
for each p ∈ R

m and each p0 ∈ R
1,

pTAxy + p0 ≥ 0 for each y ∈ Ym(17)

implies

pT b + p0 ≥ 0.(18)

Thus let p and p0 satisfy (17). Define y ∈ Ym by yi = −1 if pi ≥ 0 and by yi = 1 if
pi < 0 (i = 1, . . . ,m), then p = −Ty|p|, and from (14), (17) we have

pT b + p0 = −|p|TTyb + p0 ≥ −|p|TTyAxy + p0 = pTAxy + p0 ≥ 0,

which proves (18). Hence the system (15), (16) has a solution λy ≥ 0, y ∈ Ym. Put
x =

∑
y∈Ym

λyxy, then Ax = b by (15), and x belongs to the set Conv{xy; y ∈ Ym} =

Conv{x1
y − x2

y; y ∈ Ym} by (16). This proves the “if” part and also the additional
assertion.

Let us have a closer look at the form of systems (8). If yi = 1, then the ith rows
of Ac − Ty∆ and Ac + Ty∆ are equal to the ith rows of A and A, respectively, and
(bc + Tyδ)i = bi. This means that in this case the ith equation of (8) has the form

(Ax1 −Ax2)i = bi,(19)

and similarly, in case yi = −1 it is of the form

(Ax1 −Ax2)i = bi.(20)

Hence we can see that the family of systems (8) for all y ∈ Ym is just the family of
all systems whose ith equations are either of the form (19) or of the form (20) for
i = 1, . . . ,m. The number of mutually different such systems is exactly 2q, where
q is the number of nonzero rows of the matrix (∆, δ). Hence, despite the inherent
exponentiality, Theorem 3 can be of practical use if q is of moderate size.

In the “if” part of the proof we proved that for each A ∈ A and b ∈ b the
equation Ax = b has a solution in the set Conv{x1

y − x2
y; y ∈ Ym}. The proof, relying

on the Farkas lemma, was purely existential. It is worth noting, however, that such
a solution can be found in a constructive way when using an algorithm described in
[9]. For its description we need a special order of elements of Ym defined inductively
via the sets Yj , j = 1, . . . ,m− 1, in the following way:

(i) The order of Y1 is −1, 1.
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(ii) If y1, . . . , y2j is the order of Yj , then (y1,−1), . . . , (y2j ,−1), (y1, 1), . . . ,
(y2j , 1) is the order of Yj+1.

Further, for a sequence z1, . . . , z2h with an even number of elements, each pair zj , zj+h

is called a conjugate pair, j = 1, . . . , h. As in Theorem 3, for each y ∈ Ym, let x1
y and

x2
y be a solution to (8), (9). Then the algorithm runs as follows:

1. Select A ∈ A and b ∈ b.
2. Form a sequence of vectors ((x1

−y − x2
−y)T , (A(x1

−y − x2
−y)− b)T )T set in the

order of the y’s in Ym.
3. For each conjugate pair x, x′ in the current sequence compute

λ =

{ x′
k

x′
k
−xk

if x′
k 
= xk,

1 otherwise,

where k is the index of the current last entry, and set

x := λx + (1 − λ)x′.

4. Cancel the second part of the sequence and in the remaining part delete the
last entry of each vector.

5. If there remains a single vector x, terminate: x solves Ax = b and x ∈
Conv{x1

y − x2
y; y ∈ Ym}. Otherwise go to step 3.

The algorithm starts with 2m vectors ((x1
−y − x2

−y)T , (A(x1
−y − x2

−y) − b)T )T ∈
R

n+m, y ∈ Ym, and proceeds by halving the sequence and deleting the last entry;
hence it is finite and at the end produces a single vector x ∈ R

n. The assertion made
in step 5 is a consequence of Theorem 2 in [9] because we have

TyAxy ≥ Tyb

for each y ∈ Ym; hence also

TyAx−y ≤ Tyb

for each y ∈ Ym, which is the form used in [9].

4. Remarks. In this section we show that Theorem 3 offers a unified view of
three earlier published results whose original proofs were rather involved and that can
be easily obtained, and perhaps also better understood, as consequences of the main
result. Next we compare the results for linear interval equations with those for linear
interval inequalities that, unlike the case of exact data, turn out to be of different
complexity.

First we consider nonnegative solvability. A linear interval system Ax = b is
called nonnegatively solvable if each system Ax = b with A ∈ A, b ∈ b is nonnegatively
solvable. The following characterization (without the convex hull part) was proved in
[7].

Theorem 4. A system of linear interval equations Ax = b is nonnegatively
solvable if and only if for each y ∈ Ym the system

(Ac − Ty∆)x = bc + Tyδ(21)

has a nonnegative solution xy. Moreover, if this is the case, then for each A ∈ A,
b ∈ b the system Ax = b has a solution in the set

Conv{xy; y ∈ Ym}.
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Repeating the argument following the proof of Theorem 3, we can say that the
ith row of (21) is of the form

(Ax)i = bi

if yi = 1 and of the form

(Ax)i = bi

if yi = −1 (hence, unlike (8), the system matrix always belongs to A in this case),
and the number of mutually different systems (21) is again 2q, where q is the number
of nonzero rows of the matrix (∆, δ).

Next we turn to square matrices. A square interval matrixA is said to be regular if
each A ∈ A is nonsingular. A number of necessary and sufficient regularity conditions
was given in Theorem 5.1 in [8]. One of them is the following, which is again obtained
as an easy consequence of Theorem 3.

Theorem 5. An interval matrix A is regular if and only if for each y ∈ Ym the
system

(Ac − Ty∆)x1 − (Ac + Ty∆)x2 = y,

x1 ≥ 0, x2 ≥ 0,

has a solution.
If A is regular, then for each right-hand side b the system of linear interval

equations Ax = b is solvable, and hence the system (8), (9) has a solution for each
y ∈ Ym. But, as shown in Theorem 2.2 in [8], in this case we can do essentially better;
namely, if we impose an additional complementarity constraint, then the solution
turns out to be unique.

Theorem 6. Let A be regular. Then for each y ∈ Ym the system

(Ac − Ty∆)x1 − (Ac + Ty∆)x2 = bc + Tyδ,(22)

x1 ≥ 0, x2 ≥ 0,(23)

(x1)Tx2 = 0,(24)

has a unique solution x1
y, x

2
y, and for the solution set X of Ax = b defined by (6) we

have

ConvX = Conv{x1
y − x2

y; y ∈ Ym}.(25)

Because of (24), for each y ∈ Ym the system (22)–(24) can be equivalently written
as

Acx− Ty∆|x| = bc + Tyδ

and its unique solution xy satisfies xy = x1
y − x2

y, so that (25) takes the form

ConvX = Conv{xy; y ∈ Ym}.(26)
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This is the form used in [8]. Theorem 6 has important theoretical consequences. If
[x, x] is the interval hull (optimal enclosure) of the solution set X, then (26) gives

xi = min
y∈Ym

(xy)i,

xi = max
y∈Ym

(xy)i

for i = 1, . . . , n. This result forms a basis for several enclosure algorithms; see [8] and
[10].

The number of systems (8), (9) to be checked for solvability is exponential in the
number of rows of A in general. This characterization is unlikely to be substantially
improved because of the following complexity result.

Theorem 7. Checking solvability of linear interval equations is NP-hard.
The proof follows easily from the fact that checking regularity of interval matrices,

which is an NP-complete problem as proved in [6], can obviously be reduced in poly-
nomial time to the problem of checking solvability of linear interval equations, which
is thus NP-hard. NP-hardness of checking nonnegative solvability was established in
part 2 of the proof of the main result in [11].

It is instructive to compare the main result of Theorem 3 with its counterpart
valid for linear interval inequalities. Analogously to the terminology in section 3, we
call a system of linear interval inequalities

Ax ≤ b

solvable if each system Ax ≤ b with A ∈ A, b ∈ b has a solution. Yet the charac-
terization in this case, as shown by Rohn and Kreslová [12], is qualitatively different:
although the proof of the “only if” part follows rather similar lines as the respective
part of the proof of Theorem 3, it turns out that only one system of linear inequalities
is to be checked for solvability.

Theorem 8. A system of linear interval inequalities Ax ≤ b is solvable if and
only if the system

Ax1 −Ax2 ≤ b,

x1 ≥ 0, x2 ≥ 0,

has a solution.
As a byproduct of the proof we obtain a nontrivial fact which is worth mentioning

explicitly [12].
Theorem 9. A system of linear interval inequalities Ax ≤ b is solvable if and

only if all the systems Ax ≤ b, A ∈ A, b ∈ b, have a solution in common.
Based on this comparison, we can conclude that, as regards solvability, linear

interval equations and linear interval inequalities behave differently. In the case of
exact data, a system of linear equations

Ax = b(27)

can be equivalently written as

(
A
−A

)
x ≤

(
b
−b

)
,(28)
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and hence any algorithm for checking solvability of (28) can be employed for checking
solvability of (27). This is no more true in the case of inexact data: A system

Ax = b(29)

cannot be equivalently written as

(
A
−A

)
x ≤

(
b
−b

)
(30)

because of dependence of data in (28) which is not reflected in (30), where the same
coefficient (say, aij) is allowed to take on different values within its two occurrences.
Hence the solution set of (29) is always a part of that of (30), but the converse inclusion
need not be true.

REFERENCES

[1] G. Alefeld and J. Herzberger, Introduction to Interval Computations, Academic Press,
New York, 1983.

[2] J. Farkas, Theorie der einfachen Ungleichungen, J. Reine Angew. Math., 124 (1902), pp. 1–27.
[3] V. Kreinovich, A. Lakeyev, J. Rohn, and P. Kahl, Computational Complexity and Feasi-

bility of Data Processing and Interval Computations, Kluwer Academic Publishers, Dor-
drecht, The Netherlands, 1998.

[4] A. Neumaier, Interval Methods for Systems of Equations, Cambridge University Press, Cam-
bridge, UK, 1990.

[5] W. Oettli and W. Prager, Compatibility of approximate solution of linear equations with
given error bounds for coefficients and right–hand sides, Numer. Math., 6 (1964), pp. 405–
409.

[6] S. Poljak and J. Rohn, Checking robust nonsingularity is NP-hard, Math. Control Signals
Systems, 6 (1993), pp. 1–9.

[7] J. Rohn, Strong solvability of interval linear programming problems, Computing, 26 (1981),
pp. 79–82.

[8] J. Rohn, Systems of linear interval equations, Linear Algebra Appl., 126 (1989), pp. 39–78.
[9] J. Rohn, An existence theorem for systems of linear equations, Linear Multilinear Algebra, 29

(1991), pp. 141–144.
[10] J. Rohn, Cheap and tight bounds: The recent result by E. Hansen can be made more efficient,

Interval Comput., 4 (1993), pp. 13–21.
[11] J. Rohn, Linear programming with inexact data is NP-hard, Z. Angew. Math. Mech., 78, Suppl.

3, (1998), pp. S1051–S1052.
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