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Abstract:

This report contains a verbatim copy of author’s informal text from 1999 which was aimed
at outlining some general ideas of solving systems of interval linear equations with depen-
dent coefficients, not at exact formulations of results.
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1. Origin of the text. In a letter dated December 23, 1985, Arnold Neumaier pro-
posed to me the problem of computing the “symmetric interval hull” of a system of
interval linear equations with a symmetric interval matrix. In June 1986, after many
unsuccessful attempts to prove a symmetric version of the Oettli-Prager theorem, I
started looking for another way and I found out that an enclosure of the symmetric
solution set could be found by using the signs (if constant) of the partial derivatives
of the variables along the coefficients of the system, and that this idea could be easily
extended to more general kinds of dependences. But I did not pursue these ideas
any further, refraining from any publication, at that time being interested in other
matters. [ only gave a talk on this topic at an Oberwolfach conference in February
1990 [8]. I returned to the problem in 1999, motivated by Rump’s paper [9] and mainly
by a series of papers by Alefeld, Kreinovich and Mayer [4], [5], [1], [2], [3] dedicated
to various descriptions of solution sets that, however, in my view did not show a way
how to compute efficiently an enclosure of the hull taking into account data depen-
dences. According to my notes, on April 21, 1999 I wrote the text included here in
Section 2, and I sent it to Giinter Mayer on June 5, 1999. In March 2001 I informed
the community over the reliable-computing net that the text was downloadable from
my web page. In the meantime, there appeared another papers by Popova [7], [6],
and Shary [10] dedicated to this theme. In particular, Sergey Shary in a letter to me
truly complained that my text having never been published, it was difficult to quote
it. This had finally convinced me that it should be made available in some form, and
I decided to publish it in this report version. The text which follows is a verbatim
copy of the text from April 21, 1999 which was originally meant as a part of a letter
and was aimed at outlining the ideas, not at exact formulations of results; no word
or symbol has been changed, although nowadays I would formulate several parts in a
more clear, or more detailed, form. I would only remark that A*¥ means the kth radius
matrix, not a power od A, and that the same holds for §*.

2. The text. I consider a system of linear interval equations with dependent coeffi-
cients in the form

A(t)z = b(7) (1)
with

p
Alt) = A+ hA*

k=1
q

b(r) = b+ZTg§é,
=1

where A, A¥ € R™" b6 € R*, AF > 0,6° > 0and t, € [-1,1], 74 € [-1,1]
(k =1,...,p,¢ = 1,...,q). The variables t,...,t,,7,...,7, are assumed to be
mutually independent. The solution set is defined by

X ={z; A(t)r = b(r), tx € [-1,1], 7, € [-1, 1] VkVI}
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and we are interested in computing

z; = min,

xTr;, = III)?,X T,

or in an enclosure of X which takes into account the dependences given.

[ will write the solution of a particular system (1), which obviously depends on ¢
and 7, alternatively as z(¢, 7). My approach consists in computing and employing the
partial derivatives 227 and B‘T YD) (k=1,...,p, L =1,...,q). First, taking the ith

Oty
Zazh—FZtk xh—b +ngéé

h=1

equation in (1)

0

B O both sides, we obtain

and taking the partial derivative

n

D

h=1

ih 8t

Or _ (Om )"
ot;  \otj ),_,

8
A ihTh + azh + ZtkAk ] 0. (2)

Introducing the vector

we can write (2) as

fori=1,...,n, hence
ox
A A(t =0
x+ A(t )6tj
and finally
t .
OrT) _ _(A)) At 7).
ot;
It is better to write it now in terms of the original variable #;:
t
WUT) _ (4w At )
Oty
Second, from (1) we have
q
o+ )
=1
which gives
ax(ta T) -1/
= (A(t))" 9o 4
S = (A(0) (1



where again the left-hand side is the vector with components g%, h=1,...,n. Now,
to compute an enclosure of the solution set X, I proceed in the following way: first,
take A = Y P_ AF § =31 6% and compute by some classical method (e.g., [pre-
conditioned] Gaussian algorithm) an enclosure [x] of the solution set of

[A— A A+ Az =[b—6b+0

(which is a usual linear interval system where the dependences are not taken into
account), and an enclosure [B] of the inverse interval matrix {(A")™1; A’ € [A—A, A+
A]}. Now, for a given 7, evaluate the interval

(—[B]A*[z); (5)

in interval arithmetic. If its upper bound is < 0, then according to (3) we have ng,: <0
in the whole region, hence T; is achieved for ¢, = —1; if the lower bound of (5) is > 0,
then Z; is achieved for ¢, = 1. Similarly, according to (4) we can set 7, = —1 if the
upper bound of

([B8"): (6)

is nonpositive, and 7, = 1 if its lower bound is nonnegative. In this way we have fixed
some of the values ., 7,. Denote

K_ = {k; t; was fixed at — 1}
K, = {k;t; was fixed at 1}

and similarly L, L, for 7,. Then Z; is achieved at the solution of some system (1) of
the form

(A= D AP Y AR Y Az =b- D5+ ) 0+ >

keK_ keK 4 k¢K_ UK el el 0¢1,_ ULy

Hence if we define

A= A=) AP Y AR

keK_ kEKy

A= Y AR

k¢K_UK

Vo= b= 5+ ) 4,

Ler_ el

o= )

f%L_UL+
and if we compute by any classical method an enclosure [[z]] of the system
[A"— ATA + Alle =0 = 8", 0 + 4],
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then the upper bound of [[z]]; is also an upper bound on T; which, since the dependences
have been taken into account, can be expected to be smaller than the upper bound of

In this way, by a repeated use of this method for i = 1,...,n we can compute better
bounds that reflect the dependences in the data. The disadvantage of this procedure
consists in the fact that each ¢ must be handled separately; but we must take into
account that this is a difficult problem. The whole process may be used repeatedly
until no further change in the bounds occurs.

It is worth mentioning that in a special case when all ¢, and 7, have been fixed, i.e.
K UK, ={1,...,p}and L_U L, = {1,...,q}, we have T; = z;, where z is the

solution of
(A= > A+ Y AfMe=b- ) 5+ > 4 (7)

kek_ keK lel_ 2

A few more words about the symmetric case. Let us have a linear interval system
[A—A, A+ Alzx = [b—6,b+0] with symmetric A, A, and we are interested in bounding
the solution set

X={p;Ax=b A ec[A-AA+AL bV e€[b—¥50b+7], A symmetric}.

Here we can employ the form (1) with

A(t) = A + Z tkkAkkekeg + Z tijkj (6]66? + 6]'6?), (8)
k=1 k<j
b(r) = b+ Tibees 9)
=1
where ey is the kth column of the unit matrix /. Here by (3), (4)
O -1 T -1
S —((A@®)™ Agrerer )i = —Ape (A1) 3 2,
O -1 T T
o = —((A[R) 7 Arilere; + ejer)2);
kj
= Ay (A5 w5 + (A1) wn),
8a:i _ _
= ((A(t) ™" deen)i = Se(A(t))7',
67,_;

hence (5) has the form
— Ak [Bli[x]x

for tkk and
— A ([Bliklz]; + [Blijlelk)
for tx;, k < j, and (6) has the form

e[ Blie,
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so that the evaluation of the signs of their bounds is easy.
In the particular case when all the ¢;’s and 7’s have been fixed, the equation (7) in
view of (8) and (9) takes on the form

(A—ToA)r=b+7100
where Tj; = t;; for « < j and T}; = T;; for j >4, and “o” is the Hadamard product of

matrices (i.e., (T o A);; = T;;A;j etc.).
Other cases (as skew-symmetric, Toeplitz etc.) can be handled in a similar way.
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