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Abstract A residual existence theorem for linear equations is proved: if A ∈ Rm×n,

b ∈ Rm and if X is a finite subset of Rn satisfying maxx∈X pT (Ax − b) ≥ 0 for each

p ∈ Rm, then the system of linear equations Ax = b has a solution in the convex hull

of X. An application of this result to unique solvability of the absolute value equation

Ax + B|x| = b is given.

Keywords Linear equations · Solution · Existence · Residual · Convex hull · Absolute

value equation

1 Introduction

As the main result of this paper, we prove the following residual existence (and local-

ization) theorem for linear equations (Theorem 2 below): if A ∈ Rm×n, b ∈ Rm and

if X is a finite subset of Rn satisfying

max
x∈X

pT (Ax− b) ≥ 0

for each p ∈ Rm, then the system of linear equations

Ax = b

has a solution in the convex hull of X. The result is then applied to derive a sufficient

condition for unique solvability of the absolute value equation

Ax + B|x| = b
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(Theorem 6).

We use the following notations. Matrix (or vector) inequalities, as A ≤ B or A < B,

are understood componentwise. A•i denotes the ith column of A. I is the unit matrix

and e = (1, . . . , 1)T is the vector of all ones. The absolute value of a matrix (or vector)

A = (aij) is defined by |A| = (|aij |). Yn = {y | |y| = e} is the set of all ±1-vectors in

Rn, so that its cardinality is 2n. For each y ∈ Rn we denote

Ty = diag (y1, . . . , yn) =

0BBB@
y1 0 . . . 0

0 y2 . . . 0
...

...
. . .

...

0 0 . . . yn

1CCCA , (1)

and Conv(X) is the convex hull of X.

2 The residual existence theorem

In the proof of the main theorem we shall utilize the following result proved by Gordan

[2] (see also [1]).

Theorem 1 Let A ∈ Rm×n. Then the system

Ax = 0,

eT x = 1,

x ≥ 0

has a solution if and only if for each p ∈ Rm there holds

(AT p)i ≤ 0

for some i.

The following theorem is the principal result of this paper.

Theorem 2 Let A ∈ Rm×n, b ∈ Rm, and let X be a finite subset of Rn such that

max
x∈X

pT (Ax− b) ≥ 0 (2)

holds for each p ∈ Rm. Then the system

Ax = b

has a solution in Conv(X).

Comment We call this result a “residual existence theorem” because the condition

(2) is formulated in terms of a finite set of residuals Ax− b, x ∈ X.
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Proof Let X = {x1, . . . , xk}, and let R be an m× k matrix defined by R•i = b− Axi

(i = 1, . . . , k). By (2), for each p ∈ Rm there exists an i such that pT (Axi − b) ≥ 0,

hence

(RT p)i = (pT R)i = pT (b−Axi) = −pT (Axi − b) ≤ 0

holds, thus by Theorem 1 there exists a vector λ ∈ Rk satisfying

Rλ = 0, (3)

eT λ = 1, (4)

λ ≥ 0. (5)

Then (3) gives
kX

i=1

λi(b−Axi) = 0, (6)

so that the vector

x =

kX
i=1

λixi

in view of (4), (5), (6) satisfies

Ax = (eT λ)b = b

and

x ∈ Conv(X),

which concludes the proof. ut
The condition (2) is generally not easy to verify, but it is satisfied if the residual set

{Ax− b | x ∈ Rn } (7)

intersects all orthants of Rm. In this way we obtain the following consequence.

Theorem 3 Let A ∈ Rm×n and b ∈ Rm. Then the system of linear equations

Ax = b (8)

has a solution if and only if the residual set (7) intersects all orthants of Rm.

Proof If (8) has a solution x, then b−Ax = 0 belongs to each orthant of Rm. Conversely,

if (7) intersects all orthants of Rm, then for each orthant O we can pick an xO satisfying

AxO − b ∈ O. Put X = {xO | O is an orthant of Rm }. Then for each p ∈ Rm, letting

O to be the orthant containing p, we have pT (AxO − b) ≥ 0 and Theorem 2 implies

existence of a solution to (8). ut
A small change in the definition of the residual set (7) makes it possible to formulate

an analogous result for nonnegative solvability.

Theorem 4 Let A ∈ Rm×n and b ∈ Rm. Then the system of linear equations

Ax = b (9)

has a nonnegative solution if and only if the residual set

{Ax− b | x ≥ 0 } (10)

intersects all orthants of Rm.
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Proof Obviously, if (9) has a nonnegative solution, then the set (10) contains 0 and thus

intersects all orthants. Conversely, if the latter is true, then for each orthant O of Rm

there exists a nonnegative xO satisfying AxO − b ∈ O, and arguing as in the proof

of Theorem 3 we come to the conclusion that the equation (9) has a solution which

belongs to the convex hull of the nonnegative vectors xO and thus is itself nonnegative

as well. ut

3 Application: Unique solvability of the absolute value equation

As an application of our previous results, we prove an existence and uniqueness theorem

for the absolute value equation

Ax + B|x| = b

(A, B square) which has been recently studied in literature (Mangasarian [3], [4], [5],

Mangasarian and Meyer [6], Prokopyev [7], Rohn [8]). The basic result concerning

unique solvability of the absolute value equation is Theorem 4.1 in [8].

Theorem 5 For each A, B ∈ Rn×n, exactly one of the two alternatives holds:

(i) for each B′ with |B′| ≤ |B| and for each b ∈ Rn the equation

Ax + B′|x| = b

has a unique solution,

(ii) the inequality

|Ax| ≤ |B||x|
has a nontrivial solution.

We shall use this theorem to prove the following result.

Theorem 6 Let A, B ∈ Rn×n and let for each y ∈ Yn the equation

Ax− Ty|B||x| = y (11)

have a solution. Then for each B′ with |B′| ≤ |B| and for each b ∈ Rn the equation

Ax + B′|x| = b (12)

has a unique solution.

Comment Thus, solvability of a finite number of equations (11) (albeit 2n of them)

guarantees unique solvability of an infinite number of equations of the form (12) (see

(1) for the definition of Ty).

Proof For each y ∈ Yn, let xy be a solution of (11). The main part of the proof consists

in proving that each matrix C satisfying

|C −A| ≤ |B| (13)

is nonsingular. Thus let C satisfy (13). Then for each y ∈ Yn we have

|Ty(Cxy −Axy)| = |Cxy −Axy| ≤ |C −A||xy| ≤ |B||xy|,
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hence

TyAxy − |B||xy| ≤ TyCxy ≤ TyAxy + |B||xy|
and

Ty(Cxy − I•j) ≥ TyAxy − |B||xy| − TyI•j = Ty(Axy − Ty|B||xy| − y) + Tyy − TyI•j
= e− yjI•j ≥ 0

for each j = 1, . . . , n (because xy solves (11) and y ∈ Yn). Thus for each j = 1, . . . , n

the set {Cxy−I•j | y ∈ Yn } intersects all the orthants, which in the light of Theorem 3

means that the system Cx = I•j has a solution x(j). Define a matrix X by X•j = x(j)

for j = 1, . . . , n, then

CX = I,

which proves that C is nonsingular. In this way we have proved that each matrix C

satisfying (11) is nonsingular, which shows that the inequality |Ax| ≤ |B||x| has only

the trivial solution x = 0 ([8], Proposition 2.2). Now Theorem 5 guarantees unique

solvability of the equation (12) for each B′ with |B′| ≤ |B| and for each right-hand

side b. ut

Acknowledgements The author wishes to thank two anonymous referees for their construc-
tive criticism which helped to improve essentially the text of this paper.

References

1. Springer Online Reference Works (2009). http://eom.springer.de/m/m130240.htm
2. Gordan, P.: Ueber die Auflösung linearer Gleichungen mit reellen Coefficienten. Mathema-

tische Annalen 6, 23–28 (1873)
3. Mangasarian, O.: Absolute value equation solution via concave minimization. Optimization

Letters 1(1), 3–8 (2007). DOI 10.1007/s11590-006-0005-6
4. Mangasarian, O.: Absolute value programming. Computational Optimization and Applica-

tions 36(1), 43–53 (2007)
5. Mangasarian, O.: A generalized Newton method for absolute value equations. Optimization

Letters 3(1), 101–108 (2009). DOI 10.1007/s11590-008-0094-5
6. Mangasarian, O.L., Meyer, R.R.: Absolute value equations. Linear Algebra and its Appli-

cations 419(2–3), 359–367 (2006). DOI 10.1016/j.laa.2006.05.004
7. Prokopyev, O.: On equivalent reformulations for absolute value equations. To appear
8. Rohn, J.: An algorithm for solving the absolute value equation. Electronic Journal of Linear

Algebra 18, 589–599 (2009)


