

Institute of Computer Science Academy of Sciences of the Czech Republic

Does a Singular Symmetric Interval Matrix Contain a Symmetric Singular Matrix?

Jiří Rohn http://uivtx.cs.cas.cz/~rohn

Technical report No. V-1268

14.06.2019

Institute of Computer Science Academy of Sciences of the Czech Republic

Does a Singular Symmetric Interval Matrix Contain a Symmetric Singular Matrix?

Jiří Rohn¹ http://uivtx.cs.cas.cz/~rohn

Technical report No. V-1268

14.06.2019

Abstract:

We consider the conjecture formulated in the title concerning existence of a symmetric singular matrix in a singular symmetric interval matrix. We show by means of a counterexample that it is generally not valid, and we prove that it becomes true under an additional assumption of positive semidefiniteness of the midpoint matrix. The proof is constructive.²

Keywords: Symmetric interval matrix, singularity, positive semidefiniteness.

¹This work was supported with institutional support RVO:67985807.

²Above: logo of interval computations and related areas (depiction of the solution set of the system $[2, 4]x_1 + [-2, 1]x_2 = [-2, 2], [-1, 2]x_1 + [2, 4]x_2 = [-2, 2]$ (Barth and Nuding [?])).

Does a Singular Symmetric Interval Matrix Contain a Symmetric Singular Matrix?

Jiri Rohn^{a,**}

^a Institute of Computer Science, Czech Academy of Sciences, Prague, Czech Republic

Abstract

We consider the conjecture formulated in the title concerning existence of symmetric singular matrix in a singular symmetric interval matrix. We show by means of a counterexample that it is generally not valid, and we prove that it becomes true under an additional assumption of positive semidefiniteness of the midpoint matrix. The proof is constructive.

Keywords: symmetric interval matrix, singularity, positive semidefiniteness 2010 MSC: 15A09, 65G40

1. Introduction

A square interval matrix $\mathbf{A} = [A - D, A + D]$ is called singular if it contains a singular matrix, and it is said to be symmetric if both A and D are symmetric. Thus unless D = 0, \mathbf{A} contains nonsymmetric matrices as well. This context – namely, presence of both symmetric and nonsymmetric matrices within \mathbf{A} – leads to a natural question: if a symmetric \mathbf{A} is singular, does it necessarily contain a symmetric singular matrix?

In Section 2 we show by means of a 2×2 counterexample that this conjecture is not true; but then in Section 3 we prove that under an additional assumption of positive semidefiniteness of the midpoint A it becomes valid. The proof is constructive, and in Section 4 we translate it into the form of an algorithm. It is interesting that it is a two-stage process: first we must find an arbitrary (generally nonsymmetric) singular matrix in A, and then we

**Dedicated to Professor Ilja Černý on the occasion of his 90th birthday. Email address: rohn@cs.cas.cz (Jiri Rohn)

Preprint submitted to Linear Algebra and Its Applications

^{*}Work supported with institutional support RVO:67985807.

URL: http://uivtx.cs.cas.cz/~rohn (Jiri Rohn)

exploit the sign structure of its null vector to construct a symmetric singular matrix in A.

2. Counterexample

The symmetric interval matrix

$$\boldsymbol{A} = \left(\begin{array}{cc} -1 & [-1, 1] \\ [-1, 1] & 1 \end{array}\right)$$

is obviously singular since it contains the singular matrix

$$\left(\begin{array}{cc} -1 & 1 \\ -1 & 1 \end{array}\right),$$

yet each symmetric matrix in A is of the form

$$A_t = \begin{pmatrix} -1 & t \\ t & 1 \end{pmatrix}, \quad t \in [-1, 1]$$

and it satisfies $det(A_t) = -1 - t^2 < 0$, i.e., it is nonsingular. Hence, a singular symmetric interval matrix does *not* contain a symmetric singular matrix in the general case.

3. Existence of a symmetric singular matrix

We shall show, however, that under an additional assumption the conjecture becomes true.

Theorem 1. A singular symmetric interval matrix [A - D, A + D] with positive semidefinite A contains a symmetric singular matrix.

PROOF. By assumption there exists a singular matrix $S_0 \in [A - D, A + D]$ and thus also a vector $x \neq 0$ satisfying $S_0 x = 0$. Then we have

$$x^{T}Ax \le |x^{T}(A - S_{0})x| \le |x|^{T}|A - S_{0}||x| \le |x|^{T}D|x|.$$
(1)

Define a diagonal matrix T by $T_{ii} = 1$ if $x_i \ge 0$ and $T_{ii} = -1$ otherwise, then |x| = Tx and substituting into (1) we obtain

$$x^T (A - TDT) x \le 0.$$

Because A - TDT is symmetric, by the Courant-Fischer theorem [1] we have

$$\lambda_{\min}(A - TDT) = \min_{x' \neq 0} \frac{x'^T (A - TDT)x'}{x'^T x'} \le \frac{x^T (A - TDT)x}{x^T x} \le 0.$$

Now define a function f of one real variable by

$$f(t) = \lambda_{\min}(A - tTDT), \quad t \in [0, 1].$$

Then $f(0) = \lambda_{\min}(A) \ge 0$ because A is positive semidefinite by assumption, $f(1) = \lambda_{\min}(A - TDT) \le 0$ as proved above, and, moreover, f is continuous in [0, 1] since by the Wielandt-Hofman theorem [1] for each $t_1, t_2 \in [0, 1]$ we have

$$|f(t_1) - f(t_2)| \le ||(t_1 - t_2)TDT||_F \le |t_1 - t_2|||D||_F,$$

where $\|\cdot\|_F$ is the Frobenius norm. In this way the assumptions of the intermediate value theorem are met, hence there exists a $t^* \in [0, 1]$ such that $f(t^*) = 0$. Then

$$S = A - t^*TDT$$

is a symmetric singular matrix in [A - D, A + D].

4. Computation of a symmetric singular matrix

We may now sum up the construction given in the proof into the form of an algorithm. Notice that first a singular matrix S_0 must be constructed (by arbitrary means; we recommend the MATLAB file mentioned in the footnote) and then the sign structure of its null vector x is exploited to construct a real function f whose zero on the interval [0, 1] must be found (we recommend to use the classical bisection method which works well despite the lack on any additional information about f).

- 1. Find a singular matrix $S_0 \in [A D, A + D]$.
- 2. Find an $x \neq 0$ satisfying $S_0 x = 0$.
- 3. T = I; set $T_{ii} = -1$ whenever $x_i < 0$.
- 4. C = TDT.
- 5. Construct a function $f(t) = \lambda_{\min}(A tC), t \in [0, 1].$
- 6. Find a zero² t^* of f(t) in [0, 1].

¹E.g. by the file available at http://uivtx.cs.cas.cz/~rohn/other/regising.m.

²E.g. by the interval halving (bisection) method.

7. $S = A - t^*C$.

Consider a randomly generated symmetric positive semidefinite integer matrix A and a symmetric nonnegative integer matrix D.

A =

F.2 /		
.53	62 -	-89
71	10 -	-60
-64	-2 -	-17
263	54 -	-32
54 3	35 -	-12
-32 -	12 1	186
	-64 263 54	-64 -2 - 263 54 - 54 35 -

2	4	7	2	5	2
4	7	1	6	7	7
7	1	2	6	8	7
2	6	6	2	8	6
5	7	8	8	6	5
2	7	7	6	5	5

The computed matrix S_0 is not yet symmetric, but it contains a symmetric integer submatrix A(2:5,2:5). This nice integer substructure is however destroyed while computing the symmetric singular matrix S which contains no more integer entry. Finally we compute the rank of S to demonstrate its singularity.

SO =

208.5947	98.1894	-5.9186	153.5947	63.4867	-88.4053
93.0000	190.0000	-103.0000	65.0000	3.0000	-67.0000
-15.0000	-103.0000	152.0000	-70.0000	-10.0000	-24.0000
151.0000	65.0000	-70.0000	261.0000	46.0000	-38.0000
57.0000	3.0000	-10.0000	46.0000	29.0000	-17.0000
-87.0000	-53.0000	-10.0000	-26.0000	-7.0000	191.0000

```
S =
  207.0808
             98.8385
                        -4.7827
                                 153.9192
                                             64.2981
                                                      -89.9192
   98.8385
                                              6.7827
                                                      -56.7827
            193.7827 -102.4596
                                  68.2423
   -4.7827 -102.4596
                      153.0808
                                 -66.7577
                                             -5.6769
                                                      -13.7827
             68.2423
                                 262.0808
                                                       -29.2423
  153.9192
                       -66.7577
                                             50.3231
   64.2981
              6.7827
                        -5.6769
                                  50.3231
                                             32.2423
                                                       -9.7019
            -56.7827
                                             -9.7019
                                                      183.7019
  -89.9192
                      -13.7827
                                 -29.2423
>> rank(S)
ans =
     5
```

References

 G. H. Golub, C. F. van Loan, Matrix Computations, The Johns Hopkins University Press, Baltimore, 1996.