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Jǐŕı Rohn1

http://uivtx.cs.cas.cz/~rohn

Technical report No. V-1223

31.05.2014

Abstract:

We present a hybrid method for solving an absolute value equation of the form x + B|x| = b
with ϱ(|B|) < 1. It first uses the iterative process xi+1 = −B|xi| + b performed until cer-
tain condition is met, then the unique solution x∗ of the equation is found by solving a single
system of linear equations. The method is shown to work whenever all entries of x∗ are nonzero.2
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[2, 4]x1 + [−2, 1]x2 = [−2, 2], [−1, 2]x1 + [2, 4]x2 = [−2, 2] (Barth and Nuding [1])).
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1 Introduction

In [3], the authors proposed an iterative method for solving an absolute value equation of
the form

x+B|x| = b. (1.1)

They showed that if
ϱ(|B|) < 1, (1.2)

then the sequence {xi}∞i=0 generated by

x0 = b (1.3)

and
xi+1 = −B|xi|+ b (i = 0, 1, . . .) (1.4)

tends to the unique solution x∗ of the equation (1.1) and, moreover, that there holds

|x∗ − xi+1| ≤ N |xi+1 − xi| (1.5)

for each i ≥ 0, where
N = (I − |B|)−1 − I. (1.6)

The condition (1.2) is equivalent to N ≥ 0 (Horn and Johnson [2]).
In this note we show that under mild assumption (inequality (2.3) below) we can termi-

nate generation of the sequence {xi} after a finite number of steps and use the information
gathered in the last generated iteration to find the unique solution x∗ by solving a single
system of linear equations. This is what we call the hybrid method.

We use the following notation. Inequalities and absolute value are taken entrywise; “◦”
denotes the Hadamard (entrywise) product of vectors, diag(z) denotes the diagonal matrix
with diagonal vector z and for x ∈ Rn, the sign vector of x is defined by (sgn(x))i = 1 if
xi ≥ 0 and (sgn(x))i = −1 otherwise (i = 1, . . . , n). Notice that |x| = diag(sgn(x))x for each
x ∈ Rn. ϱ(A) stands for the spectral radius of A and I is the identity matrix.

2 The hybrid method

We shall need the following auxiliary result.

Theorem 1. If x, y ∈ Rn satisfy

|x− y| < |y|, (2.1)

then
0 < x ◦ y < 2y ◦ y. (2.2)

Proof. For each i, (2.1) implies yi ̸= 0, and we have

|xiyi − y2i | = |xi − yi||yi| < |yi|2 = y2i ,

hence
− y2i < xiyi − y2i < y2i
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and
0 < xiyi < 2y2i

which amounts to (2.2). 2

Now the main idea behind the hybrid method is contained in the following theorem.

Theorem 2. Let ϱ(|B|) < 1 and let the sequence {xi} generated by (1.3), (1.4) satisfy

N |xi+1 − xi| < |xi+1| (2.3)

for some i, where N is as in (1.6). Then the unique solution x∗ of (1.1) is given by

x∗ = (I +Bdiag(sgn(xi+1)))−1b. (2.4)

Proof. From (1.5) and (2.3) we have

|x∗ − xi+1| ≤ N |xi+1 − xi| < |xi+1|,

hence x∗ ◦ xi+1 > 0 by Theorem 1 which means that both x∗ and xi+1 belong to the
interior of the same orthant of Rn. Thus sgn(x∗) = sgn(xi+1) and consequently |x∗| =
diag(sgn(x∗))x∗ = diag(sgn(xi+1))x∗. Since x∗ solves

x∗ +B|x∗| = b,

it also solves
x∗ +Bdiag(sgn(xi+1))x∗ = b,

hence x∗ is given by the explicit formula (2.4). Invertibility of I +Bdiag(sgn(xi+1)) is guar-
anteed by the assumption (1.2). 2

Finally we show a necessary and sufficient condition for the hybrid method to work. Notice
that |x∗| > 0 is equivalent to x∗i ̸= 0 for each i.

Theorem 3. Let ϱ(|B|) < 1. Then the sequence {xi} generated by (1.3), (1.4) satisfies

N |xi+1 − xi| < |xi+1| (2.5)

for some i if and only if |x∗| > 0.

Proof. Let |x∗| > 0. Since xi → x∗, we have that

lim
i→∞

(|xi+1| −N |xi+1 − xi|) = |x∗| > 0,

hence by the definition of limit there exists an i0 such that

|xi+1| −N |xi+1 − xi| > 0

holds even for each i ≥ i0. Conversely, if (2.5) holds for some i, then as in the proof of
Theorem 2 we obtain

|x∗ − xi+1| < |xi+1|
which means that |x∗| > 0 since x∗j = 0 for some j would imply |xi+1

j | < |xi+1
j |, a contradic-

tion. 2
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