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Abstract. We give several characterizations of regularity of interval matrices. All of them have to
do with solvability of certain systems of nonlinear equations or inequalities. The most illustrative of
them is the following one: an interval matrix [Ac − ∆, Ac + ∆] is regular if and only if the nonlinear
inequality |x| > ∆|A−1

c x| has a solution in each orthant. These results are then applied to derive two
theorems of the alternatives for inequalities with absolute values.

1. Introduction

In this paper we use the following notations. Matrix inequalities, as A ≤ B or
A < B, are understood componentwise. The absolute value of a matrix A = (aij) is
defined by A = (|aij|). The same notations also apply to vectors that are considered
one-column matrices. I is the unit matrix, ej is the jth column of I, and e = (1, …, 1)T

is the vector of all ones. Yn = {y | |y| = e} is the set of all ±1-vectors in R
n, so that

its cardinality is 2n. For each y ∈ Yn we denote

Ty = diag (y1, …, yn) =




y1 0 … 0
0 y2 … 0
...

...
. . .

...
0 0 … yn


 ,

and R
n
y = {x | Tyx ≥ 0} is the orthant prescribed by the ±1-vector y ∈ Yn.

As is well known, a square interval matrix A = [Ac − ∆, Ac + ∆] =
{A | Ac − ∆ ≤ A ≤ Ac + ∆} is called regular if each A ∈ A is nonsingular.
More than ten necessary and sufficient regularity conditions are given in Theorem
5.1 in [6]. All of them are finitely verifiable, but all of them exhibit exponential
complexity. This fact was explained in late 1980’s by Poljak and Rohn [2] who
proved that checking regularity of interval matrices is a co-NP-complete problem,
so that necessary and sufficient regularity conditions verifiable in polynomial time
cannot be expected to exist provided the famous conjecture P �= NP is true.
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100 JIŘÍ ROHN

In this paper we give two other sets of necessary and sufficient regularity con-
ditions. All of them have to do with solvability of some systems of nonlinear
equations or inequalities. The most illustrative among them is the following one:
[Ac − ∆, Ac + ∆] is regular if and only if the nonlinear equation

|x| > ∆|A−1
c x|

has a solution in each orthant (Theorem 3.2, (v)). None of these conditions can
escape the exponential complexity (there are 2n orthants in R

n), but their formula-
tions are “more elegant” since exponentiality is somewhat hidden there.

The layout of the paper is as follows. In Section 2 we formulate an auxiliary
existence lemma which, although little known, is very useful in interval contexts.
It is used in Section 3 at a key point of the main proof. The results are formulated
in two theorems. In Theorem 3.1 nonsingularity of Ac is not assumed, but as a
result the formulations are a little burdensome. Assuming nonsingularity of Ac

in Theorem 3.2, we obtain more elegant formulations of the type “... [unique]
solvability in each orthant.” As a direct consequence we then prove in Section 4
two theorems of the alternatives for inequalities involving absolute values.

2. An Auxiliary Existence Lemma

At a key point of the main proof in Section 3 we shall employ the following
existence lemma. It is formulated here in its full generality for rectangular linear
systems, although we shall utilize it for the square case only.

LEMMA 2.1. Let A ∈ R
m × n, b ∈ R

m, and let for each y ∈ Ym the inequality

TyAx ≥ Tyb (2.1)

have a solution xy. Then the equation

Ax = b (2.2)

has a solution in the set Conv {xy | y ∈ Ym}.

Here, Conv denotes the convex hull. Two proofs of this lemma are available:
a shorter existence proof in [5], which makes use of the Farkas lemma, and a
lengthy constructive proof in [4], where it is shown that a solution x of (2.2) can be
constructed from the solutions xy of (2.1) by means of a certain finite “halve and
delete” algorithm.

3. Regularity Conditions

First we shall not assume nonsingularity of the midpoint matrix Ac. Then we have
the following necessary and sufficient regularity conditions:

THEOREM 3.1. For a square interval matrix A = [Ac − ∆, Ac + ∆], the following
assertions are equivalent:
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(i) A is regular,

(ii) for each vector a > 0 the equation

|Acx| = ∆|x| + a (3.1)

has for each y ∈ Yn a unique solution satisfying Acx ∈ R
n
y ,

(iii) the equation

|Acx| = ∆|x| + e

has for each y ∈ Yn a unique solution satisfying Acx ∈ R
n
y ,

(iv) there exists an a > 0 such that the equation (3.1) has for each y ∈ Yn a solution
satisfying Acx ∈ R

n
y ,

(v) for each y ∈ Yn the inequality

|Acx| > ∆|x| (3.2)

has a solution satisfying Acx ∈ R
n
y .

Proof. We shall prove that (i) ⇒ (ii) ⇒ (iii) ⇒ (iv) ⇒ (v) ⇒ (i) hold. The
implications (ii) ⇒ (iii) ⇒ (iv) ⇒ (v) are straightforward, so that we are left with
proving (i) ⇒ (ii) and (v) ⇒ (i).

(i) ⇒ (ii): In [6, Theorem 2.2], it is stated that if A is regular, then for each
y ∈ Yn and each right-hand side interval vector b = [bc − δ, bc + δ] the nonlinear
equation

Acx − Ty∆|x| = bc + Tyδ

has a unique solution. Let us apply the result to the right-hand side b = [−a, a].
Then the theorem says that for each y ∈ Yn the equation

Acx − Ty∆|x| = Tya

has a unique solution, which then satisfies TyAcx = ∆|x| + a ≥ a > 0, hence
TyAcx > 0 and thus also Acx ∈ R

n
y and |Acx| = ∆|x| + a. If x′ is another solution

of (3.1) with TyAcx′ ∈ R
n
y , then it satisfies Acx′ − Ty∆|x′| = Tya and thus x′ = x in

view of the uniqueness of the solution of this equation stated in the above-quoted
theorem.

(v) ⇒ (i): Let for each y ∈ Yn the inequality (3.2) have a solution xy satisfying
TyAcxy ≥ 0. Then TyAcxy −∆|xy| > 0, so that there exists a positive real number αy

such that

αy(TyAcxy − ∆|xy|) ≥ e. (3.3)

Now, take an A ∈ A and j ∈ {1, …, n}. We shall prove that the equation Ax = ej has
a solution. To this end, take an arbitrary y ∈ Yn. Since |Ty(A − Ac)αyxy| ≤ ∆αy|xy|,
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we have Ty(A − Ac)αyxy ≥ −∆αy|xy| and hence

Ty(Aαyxy − ej) = TyAcαyxy + Ty(A − Ac)αyxy − Tyej

≥ TyAcαyxy − ∆αy|xy| − yjej

≥ e − yjej ≥ 0

because of (3.3) and of the fact that yj = ±1. We have proved that for given A ∈ A
and j ∈ {1, …, n} the inequality

TyAx ≥ Tyej

has a solution for each y ∈ Yn (namely, x = αyxy). This, according to Lemma 2.1,
means that the equation

Ax = ej

has a solution, say x(j). Here, j ∈ {1, …, n} was arbitrary. Hence, if we construct the
matrix X = (x(1), …, x(n)), then it satisfies AX = I, which means that A is invertible
and thus nonsingular, hence A is regular. This concludes the proof of the implication
(v) ⇒ (i), and thus also of the whole theorem. �

Now, the formulation of Theorem 3.1 essentially simplifies if we assume that
the midpoint matrix Ac is nonsingular. Then we have:

THEOREM 3.2. For a square interval matrix A = [Ac−∆, Ac +∆] with nonsingular
Ac, the following assertions are equivalent:

(i) A is regular,

(ii) for each vector a > 0 the equation

|x| = ∆|A−1
c x| + a (3.4)

has in each orthant a unique solution,

(iii) the equation

|x| = ∆|A−1
c x| + e

has in each orthant a unique solution,

(iv) there exists an a > 0 such that the equation (3.4) has in each orthant a solution,

(v) the inequality

|x| > ∆|A−1
c x| (3.5)

has in each orthant a solution.

Proof. If A is regular, then according to Theorem 3.1, (ii), for each a > 0 and
y ∈ Yn the equation

|Acx| = ∆|x| + a
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has a unique solution xy satisfying Acxy ∈ R
n
y . Put x̃y = Acxy, then for each y ∈ Yn

the equation

|x| = ∆|A−1
c x| + a (3.6)

has a unique solution x̃y satisfying x̃y ∈ R
n
y . This proves that the equation (3.6) has a

unique solution in each orthant. Thereby we have proved the implication (i) ⇒ (ii).
The implications (ii) ⇒ (iii) ⇒ (iv) ⇒ (v) are again obvious. If the inequality
|x| > ∆|A−1

c x| has a solution in each orthant, then for each y ∈ Yn it has a solution
x̃y satisfying x̃y ∈ R

n
y . Put xy = A−1

c x̃y, then |Acxy| > ∆|xy| and Acxy ∈ R
n
y , hence

by the assertion (v) of Theorem 3.1 the interval matrix A is regular. This proves
(v) ⇒ (i), and thereby also the mutual equivalence of all five assertions. �

Finally we shall show that the explicit use of A−1
c in (3.5) can be avoided while

still keeping the property of existence of a solution in each orthant.

THEOREM 3.3. An n × n interval matrix A = [Ac − ∆, Ac + ∆] is regular if and
only if there exists a matrix R ∈ R

n × n such that the inequality

|x| > |(I − AcR)x| + ∆|Rx| (3.7)

has a solution in each orthant.

Proof. If A is regular, then by Theorem 3.2, (v), the inequality (3.5) has a solution
in each orthant; this is just the inequality (3.7) for R = A−1

c . Conversely, let for each
y ∈ Yn the inequality (3.7) have a solution x̃y ∈ R

n
y . Then from (3.7) it follows

∆|Rx̃y| < |x̃y| − |(I − AcR)x̃y| =
∣∣∣|x̃y| − |(I − AcR)x̃y|

∣∣∣
≤ |x̃y − (x̃y − AcRx̃y)| = |AcRx̃y|,

hence xy := Rx̃y satisfies

|Acxy| > ∆|xy|.
Next, from (3.7) we have

|x̃y − Acxy| = |(I − AcR)x̃y| < |x̃y|,
which shows that Acxy belongs to the same orthant as x̃y, hence Acxy ∈ R

n
y . We have

proved that for each y ∈ Yn the inequality |Acx| > ∆|x| has a solution (namely, xy)
satisfying Acx ∈ R

n
y . By Theorem 3.1, (v), this implies regularity of A. �

4. Theorems of the Alternatives

As direct consequences of the previous results we obtain two nontrivial theorems
of the alternatives for inequalities involving absolute values.

THEOREM 4.1. For each A, B ∈ R
n × n, exactly one of the following two alternatives

holds:
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(a) for each y ∈ Yn the inequality

|Ax| > |B||x|
has a solution x satisfying Ax ∈ R

n
y ,

(b) the inequality

|Ax| ≤ |B||x|
has a nontrivial solution.

Proof. Consider the interval matrix A = [A − |B|, A + |B|]. By assertion (v)
of Theorem 3.1, regularity of A is equivalent to (a), and by the Oettli-Prager
theorem [1] (applied to the interval linear system [A − |B|, A + |B|]x = [0, 0])
singularity of A is equivalent to (b). This proves that exactly one of the alternatives
(a), (b) holds. �

As before, we get a more smooth formulation of the first alternative if we assume
nonsingularity of A.

THEOREM 4.2. Let A, B ∈ R
n × n, A nonsingular. Then exactly one of the following

two alternatives holds:

(a) the inequality

|x| > |B||Ax|
has a solution in each orthant,

(b) the inequality

|x| ≤ |B||Ax|
has a nontrivial solution.

Proof. The proof goes along the same lines as the proof of Theorem 4.1 when
employing the interval matrix A = [A−1 − |B|, A−1 + |B|] and the assertion (v) of
Theorem 3.2. �

We have two corollaries. The first one is obtained directly from Theorem 4.1.

COROLLARY 4.1. For each A, B ∈ R
n × n, at least one of the inequalities

|Ax| > |B||x|,
|Ax| ≤ |B||x|

has a nontrivial solution.

The second corollary is obtained from Theorem 4.2 by setting B = I.

COROLLARY 4.2. For a nonsingular matrix A ∈ R
n × n, exactly one of the following

two alternatives holds:
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(a) the inequality

|x| > |Ax|
has a solution in each orthant,

(b) the inequality

|x| ≤ |Ax|
has a nontrivial solution.

We note that another related theorem of the alternatives concerning solvability
of the equation Ax + B|x| = b was given in [3].
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