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Abstract. This is a survey of forty necessary and sufficient conditions for regularity of interval
matrices published in various papers over the last thirty-five years. A full list of references to the
sources of all the conditions is given, and they are commented on in detail.
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1. Introduction. During the last thirty-five years (1973-2008), considerable in-
terest has been dedicated to the problem of regularity of interval matrices. It has
resulted in formulations of altogether forty necessary and sufficient conditions that
constitute the subject matter of this survey paper.

By definition, a square interval matrix A is called regular if each A ∈ A is
nonsingular, and it is said to be singular otherwise (i.e., if it contains a singular
matrix). It is the purpose of this paper to show that this property can be reformulated
in surprisingly many surprisingly various ways. In the main Theorem 4.1 we show that
regularity of interval matrices can be characterized in terms of determinants (Theorem
4.1, condition (xxxii)), matrix inverses (xxx), linear equations (xxv), absolute value
equations (v), absolute value inequalities (ii), matrix equations (xxiv), solvability in
each orthant (xvi), inclusions (xxxvii), set properties (xxxvi), real spectral radius
(xxxiv), P -matrices (xxix) and edge nonsingularity (xli). We do not include the proof
of mutual equivalence of all the conditions since that would make for a very lengthy
paper. Instead, we list in Fig. 5.1 a full list of their sources.

In Section 6, the forty conditions from Theorem 4.1 are commented on item-by-
item. For clarity, they are divided into five groups handled separately in Subsections
6.1 to 6.5. The comments contain references to a lot of related results and hopefully
show that regularity of interval matrices is worth further study.

2. Notations. We use the following notations. A•k denotes the kth column of
A. Matrix inequalities, as A ≤ B or A < B, are understood componentwise. The
absolute value of a matrix A = (aij) is defined by |A| = (|aij |). The same notations
also apply to vectors that are considered one-column matrices. I is the unit matrix
and e = (1, . . . , 1)T is the vector of all ones. Yn = {y | |y| = e} is the set of all
±1-vectors in Rn, so that its cardinality is 2n. For each x ∈ Rn we define its sign
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vector sgn(x) by

(sgn(x))i =
{

1 if xi ≥ 0,
−1 if xi < 0

(i = 1, . . . , n),

so that sgn(x) ∈ Yn. For each y ∈ Rn we denote

Ty = diag (y1, . . . , yn) =




y1 0 . . . 0
0 y2 . . . 0
...

...
. . .

...
0 0 . . . yn


 ,

and Rn
y = {x | Tyx ≥ 0} is the orthant prescribed by the ±1-vector y. Finally, we

introduce the real spectral radius of a square matrix A by

�0(A) = max{|λ| | λ is a real eigenvalue of A},
and we set �0(A) = 0 if no real eigenvalue exists.

3. Interval matrices. Given two n × n matrices Ac and ∆, ∆ ≥ 0, the set of
matrices

A = {A | |A−Ac| ≤ ∆} (3.1)

is called a (square) interval matrix with midpoint matrix Ac and radius matrix ∆.
Since the inequality |A−Ac| ≤ ∆ is equivalent to Ac −∆ ≤ A ≤ Ac+∆, we can also
write

A = {A | A ≤ A ≤ A} = [A,A],
where A = Ac −∆ and A = Ac +∆ are called the bounds of A. As it will be seen in
Theorem 4.1, the notation (3.1) is preferable for our purposes.

Given an n× n interval matrix A, we define matrices

Ayz = Ac − Ty∆Tz (3.2)

for each y ∈ Yn and z ∈ Yn. The definition implies that

(Ayz)ij = (Ac)ij − yi∆ijzj =
{

Aij if yizj = −1,
Aij if yizj = 1

(i, j = 1, . . . , n),

so that Ayz ∈ A for each y ∈ Yn, z ∈ Yn. Since cardinality of Yn is 2n, the cardinality
of the set of matrices {Ayz | y, z ∈ Yn} is at most 22n. We shall write A−yz instead
of A−y,z. In particular, we have Aye = Ac −Ty∆ and A−ye = Ac+Ty∆. The central
topic of this paper is introduced in the following definition.

Definition. A square interval matrix A is called regular if each A ∈ A is
nonsingular, and it is said to be singular otherwise (i.e., if it contains a singular
matrix).
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4. Necessary and sufficient conditions. The following theorem sums up forty
necessary and sufficient conditions for regularity of interval matrices.

Theorem 4.1. For an n × n interval matrix A, the following assertions are
equivalent:

(i) A is regular,
(ii) the inequality

|Acx| ≤ ∆|x| (4.1)

has only the trivial solution x = 0,
(iii) for each d ∈ [0, 1] the equation

|Acx| = d∆|x|

has only the trivial solution x = 0,
(iv) if A′x′ = A′′x′′ for some A′, A′′ ∈ A and x′ 
= x′′, then there exists a j such

that A′
•j 
= A′′

•j and x′jx
′′
j > 0,

(v) for each B with |B| ≤ ∆ and for each b ∈ Rn the equation

Acx+B|x| = b (4.2)

has a unique solution,
(vi) for each B with |B| ≤ ∆ and for each b ∈ Rn the algorithm (Fig. 4.1) does

z = sgn(A−1
c b);

x = (Ac +BTz)−1b;
while zjxj < 0 for some j
k = min{j | zjxj < 0};
zk = −zk;
x = (Ac +BTz)−1b;

end

Fig. 4.1. The kernel of the sign accord algorithm.

not break down1 and in a finite number of steps (at most 2n) yields the unique
solution of the equation

Acx+B|x| = b,

(vii) for each B with |B| ≤ ∆ and for each b ∈ Rn the sign accord algorithm
(Fig. 4.2) does not break down2 and in a finite number of steps (at most 2n)
yields the unique solution of the equation

Acx+B|x| = b,

1I.e., all the inverses exist.
2I.e., all the inverses exist and the denominator of α never becomes zero.
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z = sgn(A−1
c b);

x = (Ac +BTz)−1b;
C = −(Ac +BTz)−1B;
while zjxj < 0 for some j

k = min{j | zjxj < 0};
zk = −zk;
α = 2zk/(1− 2zkCkk);
x = x+ αxkC•k;
C = C + αC•kCk•;

end

Fig. 4.2. The sign accord algorithm.

(viii) for each y ∈ Yn the equation

Acx− Ty∆|x| = y (4.3)

has a solution,
(ix) for each y ∈ Yn the equation

Acx− Ty∆|x| = y

has a unique solution,
(x) for each b > 0 and for each y ∈ Yn the equation

|Acx| = ∆|x|+ b (4.4)

has a solution xy satisfying Acxy ∈ Rn
y ,

(xi) for each b > 0 and for each y ∈ Yn the equation

|Acx| = ∆|x|+ b

has a unique solution xy satisfying Acxy ∈ Rn
y ,

(xii) for each y ∈ Yn the equation

|Acx| = ∆|x|+ e

has a solution xy satisfying Acxy ∈ Rn
y ,

(xiii) for each y ∈ Yn the equation

|Acx| = ∆|x|+ e

has a unique solution xy satisfying Acxy ∈ Rn
y ,

(xiv) for each y ∈ Yn the inequality

|Acx| > ∆|x|
has a solution xy satisfying Acxy ∈ Rn

y ,
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(xv) Ac is nonsingular and for each b > 0 the equation

|x| = ∆|A−1
c x|+ b (4.5)

has a solution in each orthant,
(xvi) Ac is nonsingular and for each b > 0 the equation

|x| = ∆|A−1
c x|+ b

has a unique solution in each orthant,
(xvii) Ac is nonsingular and the equation

|x| = ∆|A−1
c x|+ e

has a solution in each orthant,
(xviii) Ac is nonsingular and the equation

|x| = ∆|A−1
c x|+ e

has a unique solution in each orthant,
(xix) Ac is nonsingular and the inequality

|x| > ∆|A−1
c x| (4.6)

has a solution in each orthant,
(xx) there exists an R ∈ Rn×n such that the inequality

|x| > |(I −AcR)x|+∆|Rx| (4.7)

has a solution in each orthant,
(xxi) for each y ∈ Yn the matrix equation

AcX − Ty∆|X | = I (4.8)

has a solution,
(xxii) for each y ∈ Yn the matrix equation

AcX − Ty∆|X | = I

has a unique solution Xy,
(xxiii) for each y ∈ Yn the matrix equation

QAc − |Q|∆Ty = I (4.9)

has a solution,
(xxiv) for each y ∈ Yn the matrix equation

QAc − |Q|∆Ty = I

has a unique solution Qy,
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(xxv) for each y ∈ Yn the linear system

Ayex1 −A−yex2 = y,

x1 ≥ 0, x2 ≥ 0
has a solution,

(xxvi) for each y ∈ Yn, Aye is nonsingular and the system

A−1
ye A−yex > 0,

x > 0

has a solution,
(xxvii) for each y ∈ Yn, Aye and A−ye are nonsingular and the system

A−1
ye x > 0,

A−1
−yex > 0

has a solution,
(xxviii) Ac is nonsingular and for each y ∈ Yn, Aye is nonsingular and the system

|A−1
c Ty∆x| < x (4.10)

has a solution,
(xxix) for each y ∈ Yn, Aye is nonsingular and A−1

ye A−ye is a P -matrix,
(xxx) for each y, z ∈ Yn, Ayz is nonsingular and

(AcA
−1
yz )ii >

1
2

holds for each i ∈ {1, . . . , n},
(xxxi) det(Ac) det(Ayz) > 0 for each y, z ∈ Yn,
(xxxii) det(Ayz) det(Ay′z′) > 0 for each y, z, y′, z′ ∈ Yn,
(xxxiii) det(Ayz) det(Ay′z) > 0 for each y, y′, z ∈ Yn such that y and y′ differ in

exactly one entry,
(xxxiv) Ac is nonsingular and

max
y,z∈Yn

�0(A
−1
c Ty∆Tz) < 1

holds,
(xxxv) for each interval n-vector b the set

X(A,b) = {x | Ax = b for some A ∈ A, b ∈ b} (4.11)

is compact and connected,
(xxxvi) there exists an interval n-vector b for which at least one component of the set

X(A,b) = {x | Ax = b for some A ∈ A, b ∈ b}
is bounded,
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(xxxvii) for each x1, x2 ∈ Rn, x1 
= x2, there holds

{Ax1 | A ∈ A} � {Ax2 | A ∈ A}, (4.12)

(xxxviii) each matrix of the form

A = Ac − dTy∆Tz, (4.13)

where d ∈ [0, 1] and y, z ∈ Yn, is nonsingular,
(xxxix) each matrix of the form

A = Ac − Tt∆Tz, (4.14)

where |t| ≤ e and z ∈ Yn, is nonsingular,
(xl) each matrix of the form

Aij =
{
(Ayz)ij if either i 
= k, or i = k and j ∈ {1, . . . ,m− 1},
(A−yz)ij if i = k and j ∈ {m+ 1, . . . , n},

Akm ∈ [Akm, Akm],

where y, z ∈ Yn and k,m ∈ {1, . . . , n}, is nonsingular,
(xli) each matrix of the form

Aij ∈
{ {Aij , Aij} if (i, j) 
= (k,m),
[Aij , Aij ] if (i, j) = (k,m)

(i, j = 1, . . . , n), (4.15)

where k,m ∈ {1, . . . , n}, is nonsingular.
5. Sources. We do not give here the proof of the mutual equivalence of all the

conditions since, as the reader may expect, this would make for a lengthy and perhaps
tedious paper. Instead, we list in Fig. 5.1 a full list of their sources.

6. Comments. In this section we comment on the conditions. At some places
we quote related theorems; for the sake of smoothness of the exposition, they are
not marked as such, but are always given in italics. The forty conditions can be
divided into five groups: (ii)-(vii), (viii)-(xxiv), (xxv)-(xxxiv), (xxxv)-(xxxvii), and
(xxxviii)-(xli).

6.1. Conditions (ii)-(vii). The conditions (ii)-(vii) sum up the basic theoreti-
cal and algorithmic facts.

(ii): This is the most important characterization, used in proofs of many other
conditions. It is advantageous to read it negated: A is singular if and only if the
inequality (4.1) has a nontrivial solution. If x 
= 0 solves (4.1), then a singular
matrix S ∈ A can be constructed as S = Ac − Ty∆Tz, where z = sgn(x) and y is
defined by yi = (Acx)i/(∆|x|)i if (∆|x|)i > 0 and yi = 1 otherwise, i = 1, . . . , n
([6], Proposition 2.10). In particular, (ii) gives that maxj(|A−1

c |∆)jj ≥ 1 implies
singularity of A, see [17], Corollary 5.1; this is the most simple verifiable sufficient
singularity condition (for its regularity counterpart, see the comment on condition
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Cond’n Reference Cond’n Reference
(ii) [12], Corollary 3.4.5, (iii) (xxii) [17], Theorem 5.1, (A3)
(iii) [20], Corollary 2.5 (xxiii) [25], p. 17, (v)
(iv) [17], Theorem 1.1 (xxiv) [25], p. 17, (v)
(v) [25], p. 14 (xxv) [17], Theorem 5.1, (A2)
(vi) [25], p. 14 (xxvi) [17], Theorem 5.1, (B2)
(vii) [25], p. 56 (xxvii) [17], Theorem 5.1, (B3)
(viii) [17], Theorem 5.1, (A1) (xxviii) [17], Theorem 5.1, (B4)
(ix) [17], Theorem 5.1, (A1) (xxix) [17], Theorem 5.1, (B1)
(x) [27], Theorem 3.1, (ii) (xxx) [17], Theorem 5.1, (C4)
(xi) [27], Theorem 3.1, (ii) (xxxi) [17], Theorem 5.1, (C1)
(xii) [27], Theorem 3.1, (iii) (xxxii) [17], Theorem 5.1, (C1)
(xiii) [27], Theorem 3.1, (iii) (xxxiii) [17], Theorem 5.1, (C2)
(xiv) [27], Theorem 3.1, (v) (xxxiv) [17], Theorem 5.1, (C3)
(xv) [27], Theorem 3.2, (ii) (xxxv) [4], Theorem 2, Conseq. 3
(xvi) [27], Theorem 3.2, (ii) (xxxvi) [9], Theorem 5.3
(xvii) [27], Theorem 3.2, (iii) (xxxvii) [15]
(xviii) [27], Theorem 3.2, (iii) (xxxviii) [20], Corollary 2.3
(xix) [27], Theorem 3.2, (v) (xxxix) [6], Proposition 2.10
(xx) [27], Theorem 3.3 (xl) [17], Theorem 5.1, (C6)
(xxi) [17], Theorem 5.1, (A3) (xli) [17], Theorem 5.1, (C7)

Fig. 5.1. Sources of the conditions.

(xxxiv) below). Moreover, the condition (ii) is the main tool for the proof of co-NP-
completeness of checking regularity (checking regularity of interval matrices of the
form [Ac − eeT , Ac + eeT ] is co-NP-complete in the class of nonnegative symmetric
positive definite rational matrices Ac; short proof in [6], Theorem 2.33, original proof
in [14]). This complexity result sheds its light on all the subsequent conditions: if the
conjecture P 
=NP is true, then none of them is verifiable in polynomial time.

(iii): This condition shows that if (4.1) holds for some x 
= 0, then it also holds
“uniformly” for some x′ 
= 0. It has a nontrivial consequence. Let us define a
nonnegative number d to be an absolute eigenvalue of a real matrix A ∈ Rn×n if
|Ax| = d|x| holds for some real x 
= 0. Surprisingly enough, each square real matrix has
an absolute eigenvalue ([24], Theorem 5). Even more, the smallest absolute eigenvalue
dmin can be given explicitly by dmin = inf{ ε ≥ 0 | [A− εI, A+ εI] is singular } ([20],
Theorem 2.2).

(iv): This is a lemma-type assertion: it is of little use as such, but it is indis-
pensable for the proofs of the subsequent important conditions (v) and (vi). In fact,
Theorem 1.1 in [17] states only necessity of (iv). But sufficiency follows easily by
contradiction: if A is singular, then A′x′ = 0 for some A′ ∈ A and x′ 
= 0, hence
A′x′ = A′x′′ = 0 for x′′ = 0, but x′jx

′′
j = 0 for each j, a contradiction.

(v): This is probably the most important single result among the forty conditions,
as it asserts existence and uniqueness of solution of any equation of the type (4.2),
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thereby enabling us to establish existence of certain uniquely defined objects (as the
matrices Xy, Qy in conditions (xxii), (xxiv), etc.).

(vi): The algorithm uses a while loop which is finite under the regularity as-
sumption, although this is not obvious from the algorithm description (theoretically,
it could return to the same z, x and cycle infinitely; in fact, this can appear if A is
singular ([17], Example 5.4)). Finiteness is proved by a sophisticated combinatorial
argument based on condition (iv) (cycling would imply singularity). When the algo-
rithm terminates in a finite number of steps, it is not difficult to see that the resulting
x is a solution of (4.2), and its uniqueness follows from the condition (ii); this gives a
constructive proof of (v).

(vii): The algorithm in condition (vi) requires explicit computation of x = (A+
BTz)−1b at each step. In condition (vii), a Sherman-Morrison rank-one update is
used for this purpose; the updated values always satisfy x = (A + BTz)−1b, C =
−(A + BTz)−1B for the current z. We present the algorithm in both forms because
the simple, although less effective form in (vi) better reveals its basic sign-accord-
oriented mechanism (z, x are said to be in sign accord if they satisfy zjxj ≥ 0 for
each j).

Comparison of (v) and (ii) gives rise to the first theorem of alternatives for real
(noninterval) data ([24], Thms. 1 and 2): for each A,B ∈ Rn×n, exactly one of the
alternatives (a), (b) holds: (a) For each B′ with |B′| ≤ |B| and for each b ∈ Rn the
equation Ax + B′|x| = b has a unique solution, (b) the inequality |Ax| ≤ |B||x| has
a nontrivial solution. Here, (a) corresponds to regularity and (b) to singularity of
[A− |B|, A+ |B| ].

6.2. Conditions (viii)-(xxiv). Conditions (viii)-(xxiv) concern equations and
inequalities containing absolute values.

(viii)-(ix): The main contribution here consists in the fact that solvability of
finitely many equations (4.3) implies unique solvability of infinitely many equations
of the form (4.2). Notice that (viii) and (ix) differ only in the word “unique”. The
same holds for several subsequent pairs of conditions ((x) and (xi), (xii) and (xiii),
etc.).

(x)-(xiv): The strongest assertion here is (xi) which shows that for each b > 0 the
set {Acx | |Acx| = ∆|x| + b } intersects all the orthants. The weakest one is (xiv),
and the proof of “(xiv)⇒(i)” [27] requires use of a little known existence theorem for
linear equations [18].

(xv)-(xx): (xv)-(xix) are counterparts of (x)-(xiv) formed by replacing the equa-
tion (4.4) by (4.5). This results in unique solvability in each orthant, which is certainly
a valuable property. The additional condition (xx) shows that the inequality (4.6)
can be replaced by (4.7), thereby escaping the use of the exact inverse A−1

c . This is
a single example of using an approximate inverse among all the forty conditions.

(xxi)-(xxii): For a regular interval matrix A, its inverse interval matrix is defined
as A−1 = [B,B], where B = min{A−1 | A ∈ A }, B = max{A−1 | A ∈ A } (com-
ponentwise). Theorem 6.2 in [17] asserts that the bounds of A−1 can be expressed
by finite means as B = miny∈Yn Xy, B = maxy∈Yn Xy (componentwise), where Xy is
the unique solution of (4.8).
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(xxiii)-(xxiv): These conditions follow from (xxi), (xxii) when applied to the
transpose interval matrix AT = {AT | A ∈ A } = [AT

c −∆T , AT
c +∆

T ]. The matrices
Qy, y ∈ Yn are used in the VERINTERVALHULL.M function [1] of VERSOFT [3]
for computing a verified interval hull of the solution set of interval linear equations
(based on [25], Sections 4.3 and 7.11).

Comparison of (xi) and (ii) gives rise to the second theorem of alternatives (un-
published): for each A,B ∈ Rn×n, exactly one of the alternatives (a), (b) holds: (a)
For each b > 0 and for each orthant O of Rn the equation |Ax| − |B||x| = b has
a unique solution xO satisfying AxO ∈ O, (b) the equation |Ax| − |B||x| = b has a
nontrivial solution for some b ≤ 0. Here, (a) corresponds to regularity and (b) to
singularity of [A− |B|, A+ |B| ].

Comparison of (xiv) and (ii) gives rise to the third theorem of alternatives ([27],
Thm. 4.1): for each A,B ∈ Rn×n, exactly one of the alternatives (a), (b) holds: (a)
For each orthant O of Rn the inequality |Ax| > |B||x| has a solution xO satisfying
AxO ∈ O, (b) the inequality |Ax| ≤ |B||x| has a nontrivial solution. Again, (a)
corresponds to regularity and (b) to singularity of [A− |B|, A+ |B| ].

6.3. Conditions (xxv)-(xxxiv). Conditions (xxv)-(xxxiv) concern equations,
inequalities and other expressions not containing absolute values3.

(xxv): This condition is formulated in terms of n × 2n linear systems. It is
mainly a “return implication” used as the last member in a chain of implications
(i)⇒(ii)⇒ . . .⇒(ix) ⇒(xxv)⇒(i). For a related more general result, see [23].

(xxvi)-(xxviii): The characteristic feature of these three conditions is their use of
strict inequalities. They are seemingly of theoretical interest only; no application of
them is known to the author so far.

(xxix): This condition brings about relationship between regularity and P -ma-
trices (by definition, a square matrix is called a P -matrix if all its principal minors
are positive). A general result published in [17], Thm. 1.2 says that if A is regular,
then A−1

1 A2 is a P -matrix for each A1, A2 ∈ A. Here it is shown that, conversely,
the P -property of finitely many matrices of the form A−1

ye A−ye, y ∈ Yn, suffices to
enforce regularity.

(xxx): This is an example of using a finite set of inverses for checking regularity.
It is used in S. M. Rump’s INTLAB function PLOTLINSOL.M [30] for verifying
regularity of 2× 2 interval matrices. As a necessary condition, it can be generalized:
if A is regular, then (AcA

−1)ii >
1
2 for each A ∈ A and each i ∈ {1, . . . , n} ([17],

Thm. 5.1, (C5)). The generalization to an arbitrary A is possible due to the inverse
matrix representation theorem ([21], Thm. 1.1): if A is regular, then for each A ∈ A
there exist nonnegative diagonal matrices Lyz, y, z ∈ Yn, satisfying Σy,z∈YnLyz = I
such that A−1 = Σy,z∈YnA

−1
yz Lyz holds (a “convex combination”).

(xxxi)-(xxxii): Both the conditions say that A is regular if and only if the deter-
minants of all the matrices Ayz , y, z ∈ Yn, are nonzero and of the same sign. The
sole nonsingularity of all the matrices Ayz, y, z ∈ Yn, is not sufficient to guarantee

3The inequality (4.10) in condition (xxviii) can be written without the absolute value as −x <
A−1

c Ty∆x < x.
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regularity: a counterexample is given by the interval matrix A = [−I, I] which is sin-
gular (it contains the zero matrix) despite nonsingularity of all the Ayz’s (each Ayz is
a ±1-diagonal matrix). Condition (xxxi), due to its simplicity, can be recommended
for solving classroom examples of small sizes.

(xxxiii): This is an equivalent, but more specific form of (xxxii). It is used in the
proofs of conditions (xxx) and (xl).

(xxxiv): There are several applications of this condition. First, the radius of
regularity defined by d(A) = inf{ε ≥ 0 ; [Ac − ε∆, Ac + ε∆] is singular} can be ex-
pressed by finite means as d(A) = 1/maxy,z∈Yn �0(A−1

c Ty∆Tz) (Poljak and Rohn
[14]). Second, since �0(A−1

c Ty∆Tz) ≤ �(A−1
c Ty∆Tz) ≤ �(|A−1

c Ty∆Tz|) ≤ �(|A−1
c |∆),

the condition �(|A−1
c |∆) < 1 implies regularity of A (originally proved by Beeck [5]

by simpler means). This is the most often used sufficient regularity condition (the
so-called strong regularity); for complexity or verifiability purposes it can also be
stated in an equivalent form (I − |A−1

c |∆)−1 ≥ 0. Another sufficient regularity condi-
tion, σmax(∆) < σmin(Ac) (singular values), is due to Rump [29]; it follows from (ii).
Third, the condition (xxxiv) shows that an interval matrix of the form [I −∆, I +∆]
is regular if and only if �(∆) < 1, cf., [19]. And fourth, it implies that an interval
matrix of the form [Ac −pqT , Ac+pqT ], where p, q are nonnegative column vectors in
Rn, is regular if and only if ‖TqA

−1
c Tp‖∞,1 < 1 ([17], Thm. 5.2, (R2); see [22] for the

norm ‖ · ‖∞,1). Finally, closely related to the condition (xxxiv) is the following result
([17], Thm. 4.6): if TzA

−1
yz Ty ≥ 0 and TzA

−1
−yzTy ≥ 0 for some y, z ∈ Yn, then A is

regular and, moreover, TzA
−1Ty ≥ 0 for each A ∈ A. In particular, for y = z = e

we obtain that if A−1 ≥ 0 and A
−1 ≥ 0, then A is regular and A−1 ≥ 0 for each

A ∈ A (Kuttler [11]); moreover, in this case A−1 can be expanded into infinite series
as A−1 = (

∑∞
j=0(A

−1
(A−A))j)A

−1
([16], Thm. 2).

6.4. Conditions (xxxv)-(xxxvii). The next three conditions are formulated
in terms of properties of certain sets.

(xxxv): The set (4.11) is called the solution set of a system of interval linear
equationsAx = b; it is described by the Oettli-Prager theorem [13] asX(A,b) = { x |
|Acx− bc| ≤ ∆|x|+ δ } (see [6], Thm. 2.9). The present condition makes it possible to
define the interval hull x(A,b) of X(A,b) by x(A,b) = [minX(A,b), maxX(A,b)]
(componentwise), i.e., as the narrowest interval vector containing it. In [25], p. 38, it
is shown that using the matrices Qy from condition (xxiv), the interval hull can be
described explicitly by x(A,b) = [miny∈Yn (Qybc − |Qy|δ), maxy∈Yn (Qybc + |Qy|δ)],
(componentwise), where b = [bc − δ, bc + δ]. Computing the interval hull is NP-hard
[28], therefore the problem of solving interval linear equations is often formulated
as that of finding an interval vector x (not necessarily the optimal one) containing
X(A,b); such an interval vector is called an enclosure of X(A,b). This, however,
cannot be seen a universal recipe as an enclosure may essentially overestimate the
interval hull, see, e.g., [26].

(xxxvi): If A is singular, then the solution set X(A,b) may be disconnected and
consist of several disjoint components (maximal connected subsets with respect to
inclusion). One would expect that at least one component should be unbounded in
this case. An important result proved by Jansson [8] says that in fact all of them are
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unbounded. Therefore, it suffices to enclose a single component of X(A,b) to get an
enclosure of the whole of X(A,b) and simultaneously to prove regularity of A. Both
known not-a-priori-exponential algorithms for checking regularity [9], [2] employ this
idea. The VERSOFT [3] function VERREGSING.M [2], moreover, yields verified
regularity or singularity.

(xxxvii): This condition was conjectured by K. RosNlaniec and proved in [15].
Indeed, the inclusion in (4.12) implies that x1 − x2 solves (4.1) and thus brings sin-
gularity.

6.5. Conditions (xxxviii)-(xli). The last four conditions are best understood
when negated: then they show that a singular interval matrix A contains singular
matrices of several specific forms.

(xxxviii): This condition has a geometric interpretation: if A is singular, then
it contains a singular matrix A = Ac − dTy∆Tz = (1 − d)Ac + d(Ac − Ty∆Tz) =
(1 − d)Ac + dAyz which belongs to the segment in Rn×n connecting the midpoint
matrix Ac with a vertex matrix Ayz.

(xxxix): A singular matrix of this form is returned in case of singularity by the
VERSOFT [3] function VERREGSING.M [2]. It is constructed there from a nonzero
solution of the inequality (4.1), see the construction of S in the above comment on
condition (ii).

(xl): This condition is most specific, but also most difficult to formulate, and
seems to be the least used of the four.

(xli): Here again, we have a geometric interpretation: if A is singular, then it
contains a singular matrix belonging to an edge of A when considered a rectangle in
the Rn2

space. An eigenvalue version of this “edge theorem” was given in [10], Thm.
21.21, and a more general result was achieved by Hollot and Bartlett [7].

Acknowledgment. The author thanks the referee for comments that helped
improve the text of this paper.
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