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1. Introduction
We start with two motivation problems:

o Total least squares. An overdetermined system Ax = b is typically unsolvable, and
the total least square solution is a solution of (A + A’")x = b+ b, where (A" | V') is
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minimized in some matrix norm. Usually, the Frobenius norm is utilized, however,
other norms can be employed as well [1,2]. For instance, [3] used the Chebyshev
norm.

e Radius of nonsingularity. Given A € R™*™ we ask what is the distance to the nearest
singular matrix. Herein, usually the Chebyshev norm is considered [4-6].

The common denominator of these two problems is that, given a linear algebraic problem,
we want to find the minimal perturbation of data (in some matrix norm) such that the
problem satisfies some property. In this paper, we focus on a very basic property of
solvability and unsolvability of linear systems of equations and inequalities subject to
perturbations with minimal Chebyshev norm.

Notation. The Chebyshev (maximum) matrix norm of A is ||All1,0 = max;;|a; ;|
Further, F and e stand for the matrix and the vector of ones, respectively, and ey for
the kth canonical unit vector. For a matrix A, we use A;, and A,; to denote its ¢th row
and jth column, respectively, and 7 := max{0,r} denotes the positive part of a real r.
We say that a system of equations or inequalities is solvable if it has a solution, and it
is feasible if it has a non-negative solution.

Problem formulation. In this paper, we will deal with the following radii of (un)solvability;
in particular, we discuss their explicit characterization, computational complexity and
other properties.

Definition 1. For a system Ax = b we introduce the radii of solvability as follows

r=1inf{||(A" | b')||1,00; (A+ A")z = b+ b is solvable},
(A" 0" )|l1,00; (A+ A)z = b+ b is unsolvable},

rt = inf{[|(A" [ )]]1,005 (A + A")

= inf{[[(4" | b)|l1,00; (A+ A")z = b+ is infeasible}.

r? :=inf{||
x =0b+1 is feasible},

)
)
)
)

ﬁ
I
\

For a system Ax < b we introduce the radii of solvability as follows

re = inf{|[(A" | ')||l1,00; (A4 A" )z < b+ b is solvable},
r = inf{|[(A" | 0')||1,00; (A4 A")z < b+ b is unsolvable},
rt = inf{||(A" | b')||l1,00; (A + A"z < b+ is feasible},

rl = inf{||(A" | V')|1,00; (A+ A")z < b+ is infeasible}.

Preliminaries. Our approach is mostly based on interval computation. By an interval
matrix we mean a family of matrices

A=A, A ={AeR™"™ A< A< A},
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where A < A are given and inequalities between matrices are understood entrywise. The
midpoint and radius matrices of A are defined as

Interval vectors are defined and denoted accordingly. An interval linear system of equa-
tions, denoted briefly as Az = b, is a family of linear systems

Ax=b, A€ A beb.

A solution of this interval system is a solution of any linear system belonging to this
family. Correspondingly, we define an interval system of inequalities and their solutions.

Solutions of interval equations are characterized by the Oettli-Prager theorem [7]
and solutions of interval inequalities by the Gerlach theorem [8]. For corollaries and
generalization see [9,10].

Theorem 1 (Oettli-Prager, 1964). A vector x € R™ is a solution of Az = b if and only
if

|ACz — b°| < AP x| + b2, (1)
Theorem 2 (Gerlach, 1981). A vector x € R™ is a solution of Ax < b if and only if
ACx < A% x| +b. (2)

We will also utilize Farkas lemma in several forms; see [9]. In fact, Lemma 1 is not
a Farkas-type statement since it considers only linear equations, but thematically it
belongs to these results.

Lemma 1. A system Axz = b is unsolvable if and only if the system
Aty =0, b1y =-1
is solvable.

Lemma 2. A system Ax = b is infeasible if and only if the system
ATy >0, b1y < -1

is solvable.

Lemma 3. A system Az < b is unsolvable if and only if the system
Aty =0, bTy=-1

is feasible.
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Lemma 4. A system Ax < b is infeasible if and only if the system
ATy >0, by < -1

1s feasible.

2. Results

2.1. Characterization

Theorem 3. We have

— min | Az — bl
ezl +1

WA Y b+ 1)

r® = min
y#0 vl

A= b

in

x>0 ||$H1+1
AT )

y#0 vl

u

)

)

’I’i

)

I~

r

Proof. In view of Theorem 1, the value of r* can be expressed as
r® =inf{d > 0; |Ax — b| < §E|x| + Je is solvable},
from which

w_ o |Az — b, Az — bl
r¥ = minmax ———— = min ————.
= = i elz|+1 z |zl +1

In view of Theorem 1 and Lemma 1, the value of r° can be expressed as
rS =inf{d > 0; |[ATy| < SEJy|, |7y + 1| < de’'|y| is solvable},

from which

s _oomax{[ATy[loo, [Ty 1)} (" Ay b+ D)oo
rZ = min T = min .

y#0 eyl y#0 l[yllx
In view of Theorem 1, the value of 72 can be expressed as

rt =inf{§ > 0; |Az — b| < §E|z| + de, is feasible},

from which

123
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P Az = bl _ . [[AZ = bl
r_=mmmaxX —————— = - -
= x>0 i eT|x[+1 x>0 |zli+1

In view of Theorem 2 and Lemma 2, the value of 7/ can be expressed as
rf =inf{6 > 0; —ATy < SEJy|, bTy < deT|y| — 1 is solvable},

from which

max{0, max;(—ATy);, b7y + 1}

f_ .
rT_ = 1min
S Ty
—yT A yTo+1)*
o AT
o T

Notice that the expression for r* already appeared in [3].

Theorem 4. We have

Az = b) M
rY = min
S
. ™A, 575+ Dl
S y>0, y#0 ||y||1
o A= D)
S P
o (=57 A,y + 1)* o
S y>0, y#0 lyll1

Proof. In view of Theorem 2, the value of 7% can be expressed as
r? =inf{d > 0; Az — b < JE|x| + de is solvable},

from which

A
Az =)o
2 Tl + 1

<
IN &

In view of Theorem 1 and Lemma 3, the value of 72 can be expressed as
ré =inf{6 > 0; |[ATy| < SEy|, [b"y+ 1| < de”|y| is feasible},

from which

max{[|[ATy[, BTy + 1} [T A YT+ Dl

r

IN®

y>0, y#0 Tyl >0, y#0 [yl
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In view of Theorem 2, the value of % can be expressed as

rL =inf{d > 0; Az — b < 0E|x| 4 de is feasible},

from which

e (AT =B e
<7 el +1

In view of Theorem 2 and Lemma 4, the value of TJ; can be expressed as
7"]; =inf{6 > 0; —ATy < SE|y|, b7y + 1 < 5eT|y| is feasible},

from which

max{0, max;(—ATy);, b7y + 1}

F—
ST 50 o eyl
=y AT+ D) Y s
= mi .
y>0, y#0 llyll1

125

Notice that the characterizations from the above Theorems 3 and 4 already appeared

in the technical report [11], but without proofs. So this paper can be viewed as a publi-

cation of those results, among many others.
2.2. Properties

The following theorem shows some relations between the radii of solvability.
Theorem 5. We have

(i) v for Az = b is equal to r¥ for Az <b, —Ax < —b,
(ii) r’ for Ax = b is equal to ré for Az <b, —Azx < —D,
(iii) 15 for Ax = b is equal to rf for Ax' — Az? =b,

(iv) r2 for Ax < b is equal to r’; for Azt — Ax? <b.

Proof. In the following, we will use the fact that the solutions to systems Az = b and

Az < b, —Az < —b are the same [12,13].
(i) We have

r® =inf{0 > 0; [A—dE, A+ 0E]x = [b— de, b+ de] is solvable}
=inf{§ > 0; [A—6E, A+ 6E]x < [b— de, b+ de],
—[A—0E,A+ 0E]xz < —[b— de, b+ de] is solvable}

I
S
Ing
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(7)) We have
r’ =inf{0 > 0; [A — 6E, A+ 6E]z = [b— de, b + de] is feasible}
=inf{0 > 0; [A—0E, A+ §E]x < [b— de,b+ de],
—[A—06E, A+ 0E]x < —[b— de, b+ de] is feasible}

.

=r..

(#7) We have by Lemmas 1 and 2

r® =inf{d >0; [A—0E,A+6E|Ty =0, [b—de,b+ de]Ty < —1 is solvable}
=inf{§ >0; [A—0E,A+6E|Ty <0, —[A-6E,A+6E|Ty <0,
[b—de,b+de]Ty

—1 is solvable}

Il

=r
(iv) We have by Lemmas 3 and 4

ri =inf{d > 0; [A - 0E, A+ SEI 'y =0, [b—de,b+ de]Ty < —1 is feasible}
=inf{0 > 0; [A—6E, A+ 6E|Ty <0, —[A—0E,A+JE]"y <0,
[b—de,b+ de]Ty = —1 is feasible}

=T O

IN=

Comment. The above statements (i) and (é¢) are by far not obvious. Their proof uses
the fact that the solutions to systems Ax = b and Az < b, —Ax < —b are the same
[12,13]. Similar transformations, however, needn’t be equivalent since they cause the so
called dependencies between interval parameters. This is also why we cannot state a
simple analogy of these statements for the other radii of solvability and the statements
(#7) and (iv) have different form.

Some cheap upper bounds for the radii are mentioned now.

Theorem 6. We have

(i) r*
(ii) r!
(m) rY
(iv) 7L

< min;{max; |a;;|, max; |b;|},

< mini max; |az-j|,

< min;{max;(a;;) ", max;(—b;) "},
< min; max;{|a;|, |bi|}.

=3 =
IN® NS @ | =

IN AN IAIA
=3

Proof. (i) If the minimum is equal to max; |b;|, then put ¥ := —b and the vector z := 0
solves Az = b+b'. Otherwise, the minimum is equal to max; |a,;| for some j. In this case,
put ' := 0 and A" := (—A,; +eb)el. Then the vector z := le; solves (A+ A')x = b+ V/
for every € > 0.
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(it) Suppose that the minimum is attained at ¢ and consider the ith equation
Agex = b;. Letting A}, := —A,., the equation (A + A’);,x = b; reads 072 = b, which is
either unsolvable or becomes unsolvable after infinitesimal perturbation of the right-hand
side.

(77) If the minimum is equal to max;(—b;)", then put ¥ := (—b)" and the vector
x := 0 solves Az < b+ b'. Otherwise, the minimum is equal to max;(a;;)" for some j.
In this case, put 0’ := 0 and A’ := (—(A.;)* — ee)e] . Then the vector z := maxf”b"lej
solves (A + A")x < b+ b for every € > 0.

(iv) Suppose that the minimum is attained at ¢ and consider the ith inequality A;.x <
b;. Put b} := —b; —e and A}, := —A;.. Then the inequality (A+ A");.z < (b+V'); reads
07z < —¢, which is unsolvable for any ¢ > 0. O

Another basic properties are listed below. We denote by r(A,b) the corresponding
radius (of solvability, unsolvability, ...) for a system with the constraint matrix A and
the right-hand side vector b.

Theorem 7. We have

(i) For every a € R and r € {r*,rs, v’ v/} we have r(aA,ab) = |a|r(A,b).
(ii) For every a >0 andr € {r¥,rs ri, ré} we have r(aA, ab) = ar(A,b).
(iii) For every r € {rz,ri,rg,ri} we have T((g), (lc’)) > max{r(4,b),r(B,c)}.
(iv) For every r € {ri,ri,ri,rz} we have r((g), (g)) < min{r(A,b),r(B,c)}.

Proof. Obvious. O

In [3], it was shown that r* needn’t be attained; that is, the corresponding system
from the definition of r* is solvable for some A’, ¥’ such that ||[(4" | ¥')|1,00 > 7%, but

for no A’,b" such that ||(A" | b')||1,00 = r¥. Similar properties have solvability-type radii.

For instance, r* = 0 for
1 1 1
=(1) e-()

On the other hand, r* is attained as long as A is nonsingular. In this case, the nearest

but the zero is not attained.

singular matrix in (1, c0)-norm is attained [4,5,14], and since the norm must be positive,
the corresponding system is unsolvable for a suitable right-hand side.

2.83. Complezity

Theorem 8. We have

(i) computing r* is an NP-hard problem,
(ii) computing r2 is an NP-hard problem,
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(iii) computing rt is a polynomial problem,
(iv) computing v is an NP-hard problem.

Proof. We will use the following NP-hard problem: Let A € R™*™ be nonsingular. In
[5,14], it was shown that determining the so called radius of nonsingularity

d(A) == inf{||A"||1,00; A+ A’ is singular} (7)

is NP-hard.

(i) This case was already proved in [3], however, for the purpose of inapproximability
results (Theorem 9) we show a different proof here.

Let A € R**(»=1) p € R™, and suppose that (A | b) is nonsingular. We claim that
d(A | b) = r*. If a perturbation (A | b) is nonsingular, then Az = ¥ is unsolvable. If
(A | b) is singular, then either b is in the image of A (meaning that Az = b is solvable),
or there is y € R"™1, 4. # 0, such that Ay = 0. In this case, (fl + z—:l;eg)x = b is solvable
with € > 0 arbitrary; a solution is x := %y

(it) Let A € R™*™ be nonsingular. We will prove that d(A) = r2 for the system with
the constraint matrix A and the right-hand side vector b := 0. If (A + A"z = b is
unsolvable, then A + A’ must be singular. Conversely, if A+ A’ is singular, then there is
a vector b’ not belonging to its image. Thus (A + A’)x = b’ is unsolvable, where b’ can
be normalized such that ||| < & for any € > 0.

(i) Due to (3), r’ can be determined as

ri:inf{ézO; Az —b< 0Ex +de, —Ax+b < JEx + de, x > 0}.

This optimization problem has a form of a generalized linear fractional programming
problem (GLFP), which is solvable in polynomial time using an interior point method
[15,16].

(iv) By reduction from Theorem 8(#) and using Theorem 5(4). O

Theorem 9. We have

(i) computing r¥ is an NP-hard problem,
(i) computing r5 is a polynomial problem,
(i) computing 7“1; is a polynomial problem,
(iv) computing ri is a polynomial problem.

Proof. (i) By reduction from Theorem 8(7) and using Theorem 5(z).
(7)) Due to (4), rZ can be determined as

rl =inf{6 > 0; ATy < 6By, ATy < By,

by +1<ée’y, —b"y—1<ée’y, y >0},

which meets the form of GLFP.
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(éii) By (5), rL can be expressed as

rl =inf{§ > 0; Az — b < §Ex + de, x > 0},

which is again a GLFP.
(iv) Due to (6), ré can be determined as

7’]; =inf{§ >0; —ATy < 5By, bTy+1 < dely, y >0},
which is again a GLFP. O

The NP-hardness results can be even more strengthened to inapproximability state-
ments.

Theorem 10. Unless P = NP, there is no polynomial algorithm to compute

(i) r with relative error + min(m,n + 1)=2

"2,

m, in)~2

(ii) r2 with relative error 4 min(m
(iii) 1 with relative error 4 min

(m
(m
(
(

(iv) r¢ with relative error 3+ min(im,n + 1)

Proof. In [5], it was shown that computing the radius of nonsingularity (7) is NP-hard
even with relative error %n’Q. The rest follows from the proofs of Theorems 8 and 9. O

On the other hand, the good news is that there is an effective algorithm provided a
certain parameter of the problem is fixed.

Theorem 11. Let A € R™*" and b € R™. There is a polynomial algorithm to compute

(i) v and ¢ provided the number of variables (n) is fived,
(ii) v° and r!{ provided the number of equations (m) is fived.

Proof. (i) As in the proof of Theorem 3, we have
= inf{é > 0; |Az — b| < dE|z| + Je is solvable}.
Denoting s := sgn(z) € {£1}" the sign vector of z, we can write |z| = diag(s)x, where

diag(s) is the diagonal matrix with entries s1,...,s,. Then E|r| = E diag(s)z = es’z,
and we can express 1 as

se{x1}n
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where
rs =1inf{d > 0; Az —b < desTx + de, —Ax +b < des’z + de, diag(s)z > 0}.

Thus, we reduced the problem of computing r* to solving 2" problems of GLFP. This is
a polynomial method as long as n is fixed.
Analogously, using

re = inf{d > 0; Az — b < §E|x| 4 de is solvable},

and decomposing the space R™ according to the signs of the entries of x, we can express

r% in terms of solving 2" problems of GLFP.

(#) From
r® =inf{d > 0; [ATy| < SEJy|, |bTy + 1| < deT|y] is solvable}

we can find r® by solving 2™ problems of GLFP (since y € R™) and similarly for /
using

rf =inf{6 > 0; —ATy < 6Ey|, bTy < deT|y| — 1 is solvable}. O
3. Extensions
3.1. General linear systems

Consider a general linear system in the form
Az +By=0b, Cx+ Dy <d, >0, (8)

comprising both equations and inequalities, and consider both the concepts of solvability
and feasibility. Then the radius of unsolvability
s (A+ Az + (B+BYy=b+V,

A B W
r = inf H(C’ D d’)
1,00

(C+Chae+(D+DYy<d+d, x>0}

generalizes %, r’ r“ r’, and the radius of solvability

A B Y
r® = inf H(Cl D’ d’)

(C+Chz+(D+ D)y <d+d, x>0 is unsolvable}

s (A+ A+ (B+B)y=b+V,

1,00

generalizes 5,17, re, TJ;.
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In order to characterize r*, r° we utilize the following description of the general interval
linear system from [10].

Theorem 12. The solution set of
Az +By=b, Cx+ Dy <d, >0, (9)
is described by

|ACz 4+ B¢y — b°| < APz + B2yl + b2,
C¢z 4+ D — d° < CPz + D?|y| +d>, > 0.

Theorem 13. We have

u . max{||Az + By — b|lsc, [|(Cz + Dy — d)"||oc }
T = Imin 3
2>0,y [zl + [yl +1
s = in max{[|(=A"p — CT¢)"||so, |B"p + D" qlloo, [V"p + d"q + 1]}
420.p.(p.0)£(0,0) Il + llgllx '

Proof. In view of Theorem 12, the value of " can be expressed as
r' =inf{d > 0;[Az + By — b| < 0Ez + E|y| + de,

Cz+ Dy —d < §Ex + §E|y| + de, = > 0},

from which the formula for r* follows.
By Farkas lemma (see the variant from [10]), the system (8) is not solvable iff and
only if the system

A'p+CTq>0, BTp+D"q=0, b'p+d'q=-1, ¢>0
is solvable. Hence by Theorem 12, the value of r° can be expressed as

r® =inf{§ > 0; — ATp— CTq < SE|p| + §Eq,
|BYp+ D"q| < SE|p| + 0 Eq,
b"p+d"q+ 1| < SElp| + 6Eq, ¢ > 0},

from which the formula for r* follows. O
We can easily generalize the bounds from Theorem 6 as follows.

Theorem 14. We have

(i) r* < ming o {max; g {|bi], (=dr) [}, max; x{[ai;], (ci) T}, max; x{[biel, (dre) T }},
(i) r* < min; y {max; ¢{|as;|, [bic|}, max;o{|ck;l, [drel; [di|}}
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Proof. () If the minimum is max; {|b;|, (—dx) ™|}, then = 0, y = 0 solve the perturbed
system with zero and non-negative right-hand side for equations and inequalities, respec-
tively. If the minimum is max; x{|a;;|, (cie) ™}, then z = e~'e;, y = 0 solve the perturbed
system by A’ := —A + EbeJT, B =0, :=0 C = (—ij — maxy, |dk|se)ejT, D' =0,
d' := 0, where € > 0 is arbitrarily small. The third case is dealt with accordingly.

(é¢) If the minimum is attained for an equation, then there is a perturbation leading to
an unsolvable equation 07z 4+ 07y = ¢ for some ¢ # 0. If the minimum is attained for an
inequality, then there is a perturbation leading to an unsolvable inequality 07z + 07y <
—&. O

3.2. Relative perturbations

Radii of solvability and unsolvability considered so far were defined as infimal § > 0
such that an independent perturbation of all system coefficients up to § leads to unsolv-
able (resp. solvable) system. Now, we generalize this concept to more flexible perturba-
tions.

Consider the general linear system (8). Given nonnegative matrices Ao, By, Co, Dy
and vectors by, dy, consider the interval linear system (9) with interval matrices and
vectors

A:=[A—6Ay, A+ Ay, B:=[B— 6By, B+ 6By,
C :=[C —8Cy,C +5Cy), D :=[D — 5Dy, D + §Dy),
b:= [b— by, b+ dbo), d:=[d— ddy,d + ddy).

For (8), define the radius of unsolvability and solvability respectively as

p" :=inf{d > 0; the class (9) contains a solvable system},

p® :=inf{d > 0; the class (9) contains an unsolvable system}.
Clearly, p* = r* and p® = r® if all radii matrices and vectors Ay, ..., dy consists of ones.
Another important case is Ag = |A|,...,do = |d|, where p* and p° correspond to maximal

percentage perturbation of coefficients such that the system (8) remains unsolvable and
solvable, respectively. In this case, it is easy to show that p* < 1 since (9) will contain
the system with zero coefficients. Analogously, p* < 1 since (9) will contain the system
with zero coefficients in the left-hand side and arbitrarily small negative coefficients in
the right-hand side.

Theorem 15. We have

U

min max {max |Az + By — bl; ax (Cz + Dy — d); }
220,,(z.y)#(0,0) i (Aoz + Bolyl +bo)i” i~ (Cox + Doly| +do); |’
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s . { (—ATp—CTq);
= min max<maxX —————————
(0,0) '

N ¢>0,p,(p,q)# ¢ (Ag|P| + CgQ)i ’
i |BTp+ DTq|; |pr+qu+1}
i (Bylpl+Dga);" bglpl+dia )’

where % =0 and § := o0, a # 0, by convention.

Proof. In view of Theorem 12, the value of p* can be expressed as

p* =1inf{d > 0;|Az + By — b| < §Apxz + dBoly| + by,
Cx + Dy — d < 0Cox + 6 Doly| + ddo, x > 0},

from which the formula for p* follows.
Analogously as in the proof of Theorem 13, the value of p® can be expressed as

p* =inf{6 > 0; — ATp— CTq < 5AL|p| +6C7 q,
|BTp+ DTq| < 6BL |p| + DL q,
1b7p + dTq+ 1] < 6bT |p| + 6dTq, q > 0},

from which the formula for p* follows. O

Remark 1. We could consider special cases of either equation, or inequalities, and dis-
tinguish (un)solvability and (in)feasibility as in Definition 1. Many properties from
Section 2, however, are valid even in the context of more general perturbations con-
sidered here. For example, the polynomial cases from Theorems 8 and 9 remain valid
since the problems reduce to GLFP.

As a generalization of Theorem 5, we can state that p* will not change if we rewrite
(9) as

Ax+By<b, Ax+By>b, Cx+Dy<d, x >0,

where double appearances of A, B, and b are handled as independent interval objects.
Analogously, p* will not change if we rewrite (9) as

Ax+ Bu—Bv=b, Cx+ Du— Dv<d, z,u,v>0,
where double appearances of B and D are considered as independent.
4. Conclusion
We introduced the concept of radii of (un)solvability for linear systems of equations

and inequalities. It can be seen as a generalization of regression in Chebyshev norm to
inequality systems.
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We characterized the radii by explicit formulae and discussed complexity questions,
including inapproximability. Extensions to non-uniform perturbations were given, too.
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