
Institute of Computer Science
Academy of Sciences of the Czech Republic

An Algorithm for Solving the
P -Matrix Problem

Jǐŕı Rohn

Technical report No. V-1150

06.01.2012

Pod Vodárenskou věž́ı 2, 182 07 Prague 8, phone: +420 266 051 111, fax: +420 286 585 789,
e-mail:rohn@cs.cas.cz

Institute of Computer Science
Academy of Sciences of the Czech Republic

An Algorithm for Solving the
P -Matrix Problem

Jǐŕı Rohn1

Technical report No. V-1150

06.01.2012

Abstract:

Described is a not-a-priori-exponential algorithm which in a finite number of steps checks or dis-
proves P -property of a square matrix A, and in the latter case also finds a nonpositive principal
minor of A.2

Keywords:
P -matrix, interval matrix, regularity, algorithm.

1This work was supported by the Institutional Research Plan AV0Z10300504.
2Above: logo of interval computations and related areas (depiction of the solution set of the system

[2, 4]x1 + [−2, 1]x2 = [−2, 2], [−1, 2]x1 + [2, 4]x2 = [−2, 2] (Barth and Nuding [1])).

1 Introduction

A square matrix is said to be a P -matrix if all its principal minors are positive; the resulting
problem of checking whether a given matrix is a P -matrix is called the P -matrix problem.
As proved by Coxson [3], this problem is co-NP-complete. Recently, S. M. Rump [12] es-
tablished a relationship between the P -property and regularity of interval matrices and used
the algorithm by Jansson and Rohn [6] for checking the latter property. In this report we
propose another algorithm for checking regularity, based on a recently published algorithm
for computing the hull of the solution set of interval linear equations [11]. We also add a pro-
cedure which enables us to find a nonpositive principal minor in case the P -matrix property
was disproved by the previous part of the algorithm. The algorithm pmat, together with
its three subalgorithms, is described in the last Section 5. Its finite termination is proved in
Theorem 3; Theorems 1 and 2 are auxiliary.

2 Auxiliary results

In this section we present two auxiliary results. The first one, due to Rump [12], describes the
basic connection between P -property of point matrices and regularity of interval matrices;
I is the identity matrix.

Theorem 1. Let both A− I and A + I be nonsingular. Then A is a P -matrix if and only
if the interval matrix

[(A− I)−1(A + I)− I, (A− I)−1(A + I) + I] (2.1)

is regular.

The second auxiliary result, which comes from [10], establishes a relationship to be used
later for finding a nonpositive principal minor in case the matrix A is found not to be a
P -matrix.

Theorem 2. Let A− I be nonsingular. Then for each y ∈ Yn we have

det((A− I)−1(A + I)− diag(y)) =
2n det(A[J(y)])

det(A− I)
, (2.2)

where
J(y) = { j | yj = −1 }.

3 Description

In order that the algorithm, whose description stretches over several pages, could be pre-
sented as a whole and not intertwined with the text, it is given in the last Section 5.

Theorem 3. For each square matrix A the algorithm pmat (Fig. 5.1) terminates in a
finite (but not a priori exponential) number of steps with one of the outputs described in lines
(03)-(05).

2

Proof. Finite and not-a-priori-exponential termination of the algorithm follows from the
analogous properties of intervalhull established in [11]. If some of the matrices A−I, A+I
is singular, then Theorem 1 does not apply and the algorithm terminates in line (10) with
output described in line (05). Next we have three returns (in lines (08), (13) and (24)) with
default output from line (06) described in line (03). The first case is obvious since a symmetric
positive definite matrix is a P -matrix [4]. In the remaining two cases the P -property of A
follows from regularity of the interval matrix B = [(A−I)−1(A+I)−I, (A−I)−1(A+I)+I]
(Theorem 1): in line (13) regularity is established from Beeck’s sufficient regularity condition
[2], and in line (24) regularity follows from the sole fact that the interval hull x of the solution
set of the system of interval linear equations Bx = [b, b] has been computed since this implies
boundedness of the solution set which precludes singularity of B (Jansson [5]). Hence we
are left with proving that if the algorithm is brought to conclusion (i.e., it terminates in line
(35)), then det(A[J]) ≤ 0 which shows that A is not a P -matrix (output description in line
(04)).

To this end, define a function

f(t) = det(A− I) det(C − diag(t)), t ∈ Rn.

We shall later essentially use the fact that f is linear in each ti (because the variable ti
appears in the matrix C − diag(t) only once, namely in the iith position). First we show
that the vector y computed in lines (26)-(28) satisfies

f(y) = 0.

Indeed, since the algorithm did not return in line (24), it must have been x = [], hence the
algorithm intervalhull in line (23) must have constructed a singular matrix S ∈ B [11], so
that a nonzero null vector x of S (line (25)) can be found. Since S ∈ B = [C − I, C + I] and
Sx = 0, we have

|Cx| = |(C − S)x| ≤ |C − S||x| ≤ I|x| = |x|.
In particular, for each i, xi = 0 implies (Cx)i = 0. Thus the vector y constructed in lines
(26)-(28) satisfies |yi| ≤ 1 and (Cx)i = yixi for each i, hence Cx = diag(y)x, which gives
that (C − diag(y))x = 0, where x 6= 0, so that det(C − diag(y)) = 0, implying f(y) = 0.

Finally we prove by induction on i = 0, 1, . . . , n that the vector y obtained after completing
line (33) satisfies

yj = ±1 (j = 1, . . . , i) (3.1)

and
f(y) ≤ 0. (3.2)

This is obviously so for i = 0. Thus assume that the induction hypothesis holds for some
i− 1 ≥ 0. At that moment,

f(y1, . . . , yi−1, yi, . . . , yn) ≤ 0

for some yi ∈ [−1, 1]. If yi = −1 or yi = 1, then we are done (line (30)). Thus assume that
yi ∈ (−1, 1). If

f(y1, . . . , yi−1, 1, . . . , yn) ≤ 0,

3

then yi is set to 1 and (3.1), (3.2) are satisfied. If

f(y1, . . . , yi−1, 1, . . . , yn) > 0,

then the function of one variable ti

f(y1, . . . , yi−1, ti, . . . , yn)

is linear (as established above), is positive at ti = 1 and nonpositive at ti = yi ∈ (−1, 1),
hence it is increasing in [−1, 1], which means that it is negative at −1. In this case yi is set
to −1 (line (32)) and the induction hypothesis (3.1), (3.2) is proved.

In this way, we obtain that the vector y constructed after completing the for-loop in lines
(29)-(34) is a ±1-vector satisfying

f(y) = det(A− I) det(C − diag(y)) ≤ 0.

Now from Theorem 2 we have

det(A[J]) =
1
2n

det(A− I) det(C − diag(y)) ≤ 0, (3.3)

where
J = { j | yj = −1 }

(see line (35)), which shows that the principal minor det(A[J]) is nonpositive and A is not
a P -matrix (output description in line (04)).

This completes the proof. 2

As the reader may have noticed, we did not mention at all the lines (16) to (22) in the
proof. These statements coming from [6] form only a heuristic aimed at diminishing the
number of orthants intersected by the solution set of Bx = [b, b] and may be deleted without
any effect on the algorithm, except possibly its speed.

4 Examples

We give three examples here. In the first one the P -property of a 6× 6 matrix is checked.

A =
9.1385 -1.6859 -2.9462 -0.3107 -0.8035 -2.2418

-1.1156 9.7549 -1.0233 -0.7262 -0.5831 -0.4063
-3.2339 -2.6475 8.5355 0.2031 -2.1402 -0.6397
1.5433 1.3389 1.7474 11.2676 0.8410 1.8611
1.2911 1.4137 1.4649 -0.2478 11.4692 1.5882
2.5236 2.7236 2.2318 1.2000 1.6646 11.8223

>> tic, [pm,J]=pmat(A), toc
pm =

1
J =

[]
Elapsed time is 0.015724 seconds.

4

In the second example the P -property is disproved and a negative principal minor is found.

A =
6.8514 8.2212 6.6785 0.6503 7.7268 1.9566
5.1015 3.1775 0.1363 4.7659 1.0618 7.8714
7.1396 5.8770 5.6158 9.8371 0.0107 6.1856
5.1521 1.3020 4.5456 9.2235 5.4176 0.1552
6.0587 2.5435 9.0495 5.6120 0.0686 8.9085
9.6670 8.0303 2.8216 6.5232 4.5134 7.6170

>> tic, [pm,J]=pmat(A), minor=det(A(J,J)), toc
pm =

0
J =

1 3
minor =

-9.2055
Elapsed time is 0.140764 seconds.

For the purpose of the third example we first describe a MATLAB function for generating
random P -matrices, coming from [9].

function A=randpmat(n)
% Generates a random nxn matrix A.
C=2*rand(n,n)-1; Ci=inv(C);
D=rand(n,n);
alpha=0.95/max(abs(eig(abs(Ci)*D)));
A=inv(C-alpha*D)*(C+alpha*D);

Finally we use this function for creating a random 500 × 500 P -matrix. The computation
was performed on a slow netbook.

>> tic,n=500;rand(’state’,1),A=randpmat(n);[pm,J]=pmat(A),toc
pm =

1
J =

[]
Elapsed time is 23.749405 seconds.

5 The algorithm

The main algorithm pmat is described here together with three its subalgorithms interval-
hull, qzmatrix, and absvaleqn. The structure is as follows:
pmat calls intervalhull,
intervalhull calls qzmatrix,
qzmatrix calls absvaleqn.
The algorithms intervalhull and qzmatrix are described in [11], absvaleqn in [7], [8].

5

(01) function [pm, J] = pmat (A)
(02) % Checks (not-)P -property of A.
(03) % pm = 1: A is a P -matrix, J = [];
(04) % pm = 0: A is not a P -matrix, det(A[J]) ≤ 0;
(05) % pm = −1: no result (see lines (09)-(11)), J = [];
(06) pm = 1; J = [];
(07) n = size(A, 1); e = (1, . . . , 1)T ∈ Rn; I = diag(e);
(08) if A is symmetric positive definite, return, end
(09) if A− I is singular or A + I is singular
(10) pm = −1; return
(11) end
(12) C = (A− I)−1(A + I); R = C−1;
(13) if %(|R|) < 1, return, end
(14) B = [C − I, C + I];
(15) b = e;
(16) γ = mink |Rb|k;
(17) for i = 1 : n
(18) for j = 1 : n
(19) b′ = b; b′j = −b′j ;
(20) if mink |Rb′|k > γ, γ = mink |Rb′|k; b = b′; end
(21) end
(22) end
(23) [x, S] = intervalhull (B, [b, b]);
(24) if x 6= [], return, end
(25) find x 6= 0 such that Sx = 0;
(26) for i = 1 : n
(27) if xi 6= 0, yi = (Cx)i/xi; else yi = 1; end
(28) end
(29) for i = 1 : n
(30) if yi 6= −1 and yi 6= 1
(31) yi = 1;
(32) if det(A− I) det(C − diag(y)) > 0, yi = −1; end
(33) end
(34) end
(35) pm = 0; J = { i | yi = −1 };

Figure 5.1: An algorithm for checking the P -property.

6

(01) function [x, S] = intervalhull (A,b)
(02) % Computes either the interval hull x
(03) % of the solution set of Ax = b,
(04) % or a singular matrix S ∈ A.
(05) x = []; S = [];
(06) if Ac is singular, S = Ac; return, end
(07) xc = A−1

c bc; z = sgn(xc); x = xc; x = xc;
(08) Z = {z}; D = ∅;
(09) while Z 6= ∅
(10) select z ∈ Z; Z = Z − {z}; D = D ∪ {z};
(11) [Qz, S] = qzmatrix (A, z);
(12) if S 6= [], x = []; return, end
(13) [Q−z, S] = qzmatrix (A,−z);
(14) if S 6= [], x = []; return, end
(15) xz = Qzbc + |Qz|δ;
(16) xz = Q−zbc − |Q−z|δ;
(17) if xz ≤ xz

(18) x = min(x, xz); x = max(x, xz);
(19) for j = 1 : n
(20) z′ = z; z′j = −z′j ;
(21) if ((xz)j(xz)j ≤ 0 and z′ /∈ Z ∪D)
(22) Z = Z ∪ {z′};
(23) end
(24) end
(25) end
(26) end
(27) x = [x, x];

Figure 5.2: An algorithm for computing the interval hull.

(01) function [Qz, S] = qzmatrix (A, z)
(02) % Computes either a solution Qz

(03) % of the equation QAc − |Q|∆Tz = I,
(04) % or a singular matrix S ∈ A.
(05) for i = 1 : n
(06) [x, S] = absvaleqn (AT

c ,−Tz∆
T , ei);

(07) if S 6= [], S = ST ; Qz = []; return
(08) end
(09) (Qz)i• = xT ;
(10) end
(11) S = [];

Figure 5.3: An algorithm for computing the matrix Qz.

7

(01) function [x, S] = absvaleqn (A,B, b)
(02) % Finds either a solution x to Ax + B|x| = b, or
(03) % a singular matrix S satisfying |S −A| ≤ |B|.
(04) x = []; S = []; i = 0; r = 0 ∈ Rn; X = 0 ∈ Rn×n;
(05) if A is singular, S = A; return, end
(06) z = sgn(A−1b);
(07) if A + BTz is singular, S = A + BTz; return, end
(08) x = (A + BTz)

−1b;
(09) C = −(A + BTz)

−1B;
(10) while zjxj < 0 for some j
(11) i = i + 1;
(12) k = min{j | zjxj < 0};
(13) if 1 + 2zkCkk ≤ 0
(14) S = A + B(Tz + (1/Ckk)eke

T
k);

(15) x = []; return
(16) end
(17) if ((k < n and rk > max

k<j
rj) or (k = n and rn > 0))

(18) x = x−X•k;
(19) for j = 1 : n
(20) if (|B||x|)j > 0, yj = (Ax)j/(|B||x|)j ; else yj = 1; end
(21) end
(22) z = sgn(x);
(23) S = A− Ty|B|Tz;
(24) x = []; return
(25) end
(26) rk = i;
(27) X•k = x;
(28) zk = −zk;
(29) α = 2zk/(1− 2zkCkk);
(30) x = x + αxkC•k;
(31) C = C + αC•kCk•;
(32) end

Figure 5.4: An algorithm for solving an absolute value equation.

8

Bibliography

[1] W. Barth and E. Nuding, Optimale Lösung von Intervallgleichungssystemen, Comput-
ing, 12 (1974), pp. 117–125. 1

[2] H. Beeck, Zur Problematik der Hüllenbestimmung von Intervallgleichungssystemen, in
Interval Mathematics, K. Nickel, ed., Lecture Notes in Computer Science 29, Berlin,
1975, Springer-Verlag, pp. 150–159. 3

[3] G. E. Coxson, The P -matrix problem is co-NP-complete, Mathematical Programming,
64 (1994), pp. 173–178. 2

[4] M. Fiedler and V. Pták, On matrices with non-positive off-diagonal elements and positive
principal minors, Czechoslovak Mathematical Journal, 12 (1962), pp. 382–400. 3

[5] C. Jansson, Calculation of exact bounds for the solution set of linear interval systems,
Linear Algebra and Its Applications, 251 (1997), pp. 321–340. 3

[6] C. Jansson and J. Rohn, An algorithm for checking regularity of interval matrices, SIAM
Journal on Matrix Analysis and Applications, 20 (1999), pp. 756–776. 2, 4

[7] J. Rohn, An algorithm for solving the absolute value equation,
Electronic Journal of Linear Algebra, 18 (2009), pp. 589–599.
http://www.math.technion.ac.il/iic/ela/ela-articles/articles/vol18 pp589-599.pdf.
5

[8] J. Rohn, An algorithm for solving the absolute value equation: An
improvement, Technical Report 1063, Institute of Computer Science,
Academy of Sciences of the Czech Republic, Prague, January 2010.
http://uivtx.cs.cas.cz/∼rohn/publist/absvaleqnreport.pdf. 5

[9] J. Rohn, A note on generating P -matrices, Technical Report 1090, Institute of Com-
puter Science, Academy of Sciences of the Czech Republic, Prague, November 2010.
http://uivtx.cs.cas.cz/∼rohn/publist/genpmat.pdf. 5

[10] J. Rohn, On Rump’s characterization of P -matrices, Technical Report 1093, Institute
of Computer Science, Academy of Sciences of the Czech Republic, Prague, November
2010. http://uivtx.cs.cas.cz/∼rohn/publist/rumppmat.pdf. 2

[11] J. Rohn, An algorithm for computing the hull of the solution set of interval linear equa-
tions, Linear Algebra and Its Applications, 435 (2011), pp. 193–201. 2, 3, 5

[12] S. M. Rump, On P -matrices., Linear Algebra Appl., 363 (2003), pp. 237–250. 2

9

