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Abstract

We consider a linear interval system with a regular n x n interval matrix [A]
which has the form [A] = [ 4+ [-R, R]. For such a system we prove necessary
and sufficient conditions for the applicability of the interval Gaussian algorithm
where applicability means that the algorithm does not break down by dividing
by an interval which contains zero. If this applicability is guaranteed we compare
the output vector [z]% with the interval hull of the solution set S = {Z| 34 €
[A], b€ [b] : A% = b}. In particular, we show that in each entry of [z]% at
least one of the two bounds is optimal. Linear interval systems of the above—
mentioned form arise when a given general system is preconditioned with the
midpoint inverse of the underlying coefficient matrix.

AMS Subject Classifications: 65F05, 65G10

Key words: Systems of linear equations, linear interval equations, preconditioned linear
interval equations, Gaussian algorithm, interval Gaussian algorithm, feasibility of the
interval Gaussian algorithm, interval hull, optimal enclosure.

1 Introduction

The interval Gaussian algorithm is an interval arithmetic counterpart of the well-
known Gaussian algorithm for solving systems of linear equations. Starting with an
n x n interval matrix [A] and an interval vector [b], it produces an interval vector
(2] = IGA([A], [b]) which contains all solutions & of linear systems AZ = b with
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arbitrary A € [A] and b € [b]. The set of all these solutions is called solution set (cf.,
e.g., [4], [9], [13] — [18]). We denote it by S. For a linear system with real data it is
known that — from a theoretical point of view — the Gaussian algorithm is applicable
without interchanging rows and columns if and only if all leading principal submatrices
as defined in Section 2 are nonsingular. For the interval Gaussian algorithm such a
necessary and sufficient condition is still missing. There are various sufficient conditions
and also necessary and sufficient ones if one restricts the class of admissible matrices —
cf. [2], [11] or [13] for an overview on such criteria known up to 1991, and [6], [7], [12] for
some newer ones. In the present paper we derive necessary and sufficient conditions for
the interval Gaussian algorithm to be applicable when the underlying interval matrix
[A] has the form

[Al =I+[-R,R], (1)

where [ is the identity matrix. If one of these conditions holds we compare [2]¢ with
the interval hull [z]* of the solution set S, i.e., the tightest interval enclosure of S. We
show that the last components of these two vectors always coincide while the other
ones generally do not. We state a necessary and sufficient condition for this situation.
At the end of our paper we show a way how to generalize our results onto matrices of
the form [A] := D + [—R, R] where D is an arbitrary real regular diagonal matrix.

Matrices of the form (1) occur, e.g., when a general system is preconditioned by the
midpoint inverse of the coefficient matrix. Note that in this case S refers to the
preconditioned system and in general does not coincide with the solution set of the
initial unpreconditioned one. In fact, S encloses the original solution set.

In Section 2 we start with some notations and with formulae for the interval Gaussian
algorithm which we wrote down mainly for notational reasons. In Section 3 we present
our results.

2 Preliminaries

By R", RV", IR, IR", IR""" we denote the set of real vectors with n components,
the set of real n x n matrices, the set of intervals, the set of interval vectors with
n components and the set of n x n interval matrices, respectively. By interval we
always mean a real compact interval. We write interval quantities in brackets with the
exception of point quantities (i.e., degenerate interval quantities) which we identify with
the element which they contain. Examples are the null matrix O and the identity matrix
I. We use the notation [A] = [4, A] = ([a];;) = ([, ay]) € TR™" simultaneously
without further reference, and we proceed similarly for the elements of R", R**", IR
and ITR". We equip the interval spaces with the usual interval arithmetic which the
reader can find, e.g., in [2] or [13]. We assume that the reader is familiar with this
arithmetic. We only recall the formula r([a] + [b]) = r[a] + r[b] where r € R, [a], [0] €
IR. 1t is well-known that this formula does not hold, in general, if » € R is replaced
by [r] € IR.

By A > 0 we denote a non-—negative n X n matrix, i.e., a;; > 0fori,5 =1,...,n. We
call z € R" positive and write x > 0 if z; >0 foralli=1,...,n.



We also mention the standard notation from interval analysis ([2], [13])

i = mid(fa]) = 2 (midpoind)
rad([a]) = 52@ (radius)
o]l = wmax{la||a € [a]} = max{|al, [a]} (absolute value)
(a]) = min{|&||d€[a]}:{ g“““@"'a'} i)ftgefw[?ie (minimal absolute value)
q([a],[b]) = max{|a—b|,[@a—0bl} (Hausdorff distance)

for intervals [a], [b]. For [A] € IR™" we obtain A = mid([A]), rad([4]), [[A]] € R™"
by applying mid(-), rad(-) and | - | entrywise, and we define the comparison matriz
([A]) = (¢i5) € IR"™™™ by setting

o) gl iti# g

Yool (eal) ifi=g
Since real quantities can be viewed as degenerate interval ones, | - | and (-) can also
be used for them.

As in [13] we call [A] € TR"™" regular if [A] contains only nonsingular n x n matrices,
and strongly regular if its midpoint matrix A is regular together with A71[A]. Tt is easy
to prove that every strongly regular interval matrix is regular.

We call [a] € I R symmetric (with respect to zero) if [a] = —[a], i.e., if [a] = [—][a]|, |[a]|],
and we denote by I Ry, the set of all symmetric intervals. The following lemma sums
up some known properties of IR,y,y,.

Lemma 1 (Cf, e.g., [13])
Let [a], [b], [c], [¢9] € ITR.

a) [a] € IRy, if and only if a =0 .
b) Forlal], [b], [c] € IRy, and 0 & [g] we get

[a] +[0] = [a] = [b] = [=([all + |[0I]), [[al] + |[0]]]
[a] - 0] = [=lall - |[o]], [[al] - 611}
[al/lg] = [=llall/{lg]), llall/(lgD)];
9] -[a] = llg]l - lal;
9] (la] +[0]) = lg]-[a] + [g] - [0]

¢) For [a] € IRy, we get

mid([g] + [a]) = mid([g] —[a]) = ¢ .



This means, in particular, that I R, is closed under the arithmetic operations +, —, *
and that the distributive law holds in I R,,,. It is easily seen that many of the proper-
ties in Lemma 1 transfer directly to vectors and matrices with symmetric entries. Thus
[A], [G] € IR™" with [A] = —[A] implies [G][A] = |[G]|[4] and mid([G] + [4]) = G.

Asin [21], pp. 19 — 20, we introduce the concept of a directed graph G(A) := (X 4, E 4)
associated with a matrix A € R"*". This graph consists of the set X 4 := {i| i =
1,...,n} of nodes i and of the set E4 := {(4,7)| a;; # 0} of edges (i, j) which are
ordered pairs of nodes. A sequence of edges is called a path of length r if it has the
form {(i;,i141)}/—. We will write ig — iy — -+ — i,_1 — i, for this path. If there is
a path i =:4yg — iy — -+ — i, := j we say i is connected to j. If in G(A) any node
i can be connected to any node j then A is defined to be irreducible; otherwise it is
called reducible. It is well-known (cf. [21], e.g.) that in the case n > 1 reducibility is
equivalent to finding a permutation matrix P such that

An O
pPAPT = M
( Agr Ag > ’

where Aj;, A, are square submatrices. Investigating the reducibility for these subma-
trices finally yields the so—called reducible normal form (cf. [21], p. 46)

Ay A
papT — :21 :22 ) | 2)
Ag A ... Ay

where each diagonal submatrix A;; is either square and irreducible, or a 1 x 1 null
matrix.

We term A € R™" an M—matriz if a;; < 0 for i # j and if A is regular with A~ > 0.
An interval matrix [A] € TR"™ " is an M-matrix if it contains only M —matrices as
elements. It is called an H-matriz if ([A]) is an M-matrix.

For A = (a;;) € R"™" the k—th leading principal submatriz Ay is defined by

ayy ... Qg
A= . | e R,

arr ... QAgk
the spectral radius p(A) is given by p(A) := max { |\|| A eigenvalue of A } and the row
sum norm ||Al|s is defined by ||A||l 1= maxi<i<y, i1 ;).
For a given interval matrix [A] € IR™ " and a given interval vector [b] € IR" the
interval Gaussian algorithm as described in [2] reads as follows:
First, we compute, consequently, [A]®) € TR™" and [)|¥) € IR", k = 1,...,n, by

using the formulae
(AW = (4], B =[],

k : .
[a]l(j) " " i=1,....,k;j=1,...,n,
a/ N . a .
D = me—U£7%b—i:k+anmj:k+L”wm
a) ek
0 for all other pairs (i, ),
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When we know [A]™), [b]®™, we compute, consequently, the components [z]¥, i =

n,n—1,...,1, of the interval vector [z]% = IGA([A], [b]) by using the formulae

@l = Y/ lal).
)¢ = ([b]gm—i [a]gy[x]y)/[a]gy, i=n—1n—2,...,1

Note that [2]9 is defined without permuting rows or columns. The construction of
(2] = IGA([A], [b]) is called the interval Gaussian algorithm or, shortly, IGA. It is
applicable (for [A] € TR™™ and for any [b] € IR") if and only if 0 & [a]\"), k =
1,...,n, which, by the definition of the matrices A®), is equivalent to 0 ¢ [a],(;,?, k=
1,...,n. It is easy to see that the IGA reduces to the ordinary Gaussian algorithm if [A]
and [b] are point quantities. As usual, we speak of the IGA with partial pivoting if either
for k=1,...,n— 1 two of the rows k,k+1,..., n are interchanged in [A]*) such that

|[a’]](c];c)| = max{ |[UJ]£’;§)| |E<i<n, 0¢ [a,]ﬁ’,j’} or for kK =1,...,n— 1 the corresponding
columns are permuted such that |[a]§c]§2| = max{ |[a]§£)| |k<j<mn, 0¢ [a],(g’;) }.
In Section 3 we will apply the IGA also to the preconditioned interval matrix A='[A]

and to the corresponding right-hand side A_Vl [b] instead of [A] and [b], respectively;
i.e., we will compute [x]S .. = IGA(A1[A], A"[b]). We will call the construction of

prec
[x]gec preconditioned interval Gaussian algorithm or, shortly, PIGA. Analogously, we

define PIGA with partial pivoting.

3 Results

We start this section with the announced necessary and sufficient conditions for the
applicability of the IGA for matrices of the form (1).

Theorem 1

Let [A] == I + [-R,R] € IR"™", [b] € IR". Then the following conditions are
equivalent.

a) IGA is applicable, i.e., [x]¢ = IGA([A], [b]) exists,
b) IGA with partial pivoting is applicable,
¢) I — R is an M-matriz,

d) p(R) <1,



e) [A] is regular,
f) [4] is strongly regular,

g) [A] is an H-matriz.

Proof

By Proposition 4.1.1 in [13], d), e), ) and g) are equivalent.

¢) <= d) follows from Proposition 3.6.3 (iii) in [13].

a) = e) is easy to see since none of the diagonal entriesja],?,? = [a]'*) contains zero.
Therefore, the Gaussian algorithm is applicable for any A € [A] which means that A
is nonsingular. Hence [A] is regular.

g) = a) is a result of Alefeld stated in [1]; cf. also Theorem 4.5.7 in [13].
a) = b)
Start the IGA with [A]M) := [A]. Then mid([A4]Y) = I, and an inductive argument

based on Lemma 1 yields mid([4]*) =1, k=1,...,n,ie.,0¢€ [a]g-c) for ¢ # j. This
shows that partial pivoting necessarily results in the original IGA.

b) = e)

Let P be the permutation matrix which describes column pivoting. Then, by assump-
tion, IGA is applicable for P[A], hence this matrix is regular. But then [A] is regular,
too. The proof performs analogously for row pivoting.

O

For the important case of the preconditioned IGA we will restate Theorem 1 as the
subsequent corollary. To this end we mention the representation

ATHA] = A7H(A + [—rad([A]), rad ([A])]) = I + [-]A7 rad([A]), |A™" |rad([A])] .

Corollary 1

Let [A] € IR™™, [b] € IR"™ and let A" exist. Then the following conditions are
equivalent.

a) PIGA is applicable, i.c., [z]G.. = IGA(A'[A], A='[b]) exists,
b) PIGA with partial pivoting is applicable,

¢) I —|A " rad([A]) is an M -matriz,

d) p(|A~" rad([A]) <1,

e) A-YA] is regular,

f) [4] is strongly regular,



g) A=V[A] is an H-matriz.

O

Here we have slightly modified condition f) of Theorem 1 by applying e) and the
definition of strong regularity. Note that a similar condition as in Corollary 1 d) was
stated in [13], p. 166, using the so—called Gauss inverse. This condition is sufficient,
but not necessary for the applicability of the PIGA.

In order to prove parts of our subsequent theorems we need some auxiliary results
which we summarize in Lemma 2.

Lemma 2
Let C:=1—Re R, R>0, p(R) <1, and let M := C~. Then the following

assertions hold.

a) The Gaussian algorithm is applicable for C; all matrices C%), k=1,...,n, are

M —-matrices.

b) For arbitrary i, j € {1,...,n} we have m;; # 0 if and only if i is connected to j

in the graph G(C).

¢) Let C = LU, L lower triangular with ones in the diagonal, U upper triangular.

Then U = C™ | and cg-c) # 0 fori # j and k < m := min{4, j} if and only if
i is connected to j in the graph G(C) such that all intermediate nodes iy in the
corresponding path satisfy is < min{i, j, k}.

In particular, l;; # 0 for i > j if and only if i is connected to j in G(C) such
that all intermediate nodes ig in the corresponding path satisfy is < j.

Proof

a)

The first part of the assertion follows from Theorem 1; in particular, C' is an
M-matrix. As in the proof of Theorem 3 in [2], pp. 186f, or with Lemma 4.5.6
in [13] one can see that C®), k =1,...,n, are M-matrices, too.

. From

M=(I-R™"=Y Rr
p=0

and from the nonnegativity of R we get m;; > 1. Since C' is an M-matrix it also
has positive diagonal entries. Therefore, the assertion is true for i = j. Assume
now ¢ # j. Then m;; # 0 if and only if (R?);; > 0 for at least one p € N. For
p > 1 this holds if and only if in the representation

n n n
=305 0 82 T
i1=11iy=1 ip—1=1

at least one summand differs from zero. The corresponding indices determine the
path required in the assertion, and vice versa. For p =1 the path is ¢ — j.
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¢) The equality U = C™ can be found, e.g., in [8], § 3.2.5.
= :

Let c 7é 0 hold with & < m. Then in G(C®) there exists the path i — j. If
= 1 this implies the assertion. If m > 1, we see from the formula

o = fED

1)
pCa (3

k=) (k=
i,k—1%k
G
klk

and from the signs of the entries of the M-matrix C*~1) that c ;é 0 if and
only if cg;q) # 0 or both cz(fc,:l), c,(ck:llj) # 0. Therefore, in G(C*~ ) we obtain
the path i — j ori — (k— 1) — j. Repeat the arguments while the upper index
goes down to 1. This yields the path in G(C™M) = G(C) as it was asserted.
—:

Let the path of the assertion exist. Without loss of generality assume that it
contains none of the nodes twice. (Otherwise cut off the piece between the two
equal nodes including one of them.) We proceed by induction on the length p of

the path. If p = 1 then the path reads i — Jj, hence ¢;; = c 7é 0. Using the
arguments following (3) we obtain c )£ 0 for all k < m. Assume now that the
assertion is true for all pairs of 1nd1ces for which the corresponding path in G(C')
has a length which is less than or equal to some p. Let i, 7 be connected by a
path of length p 4+ 1 and let i be the largest node among all 1ntermed1ate nodes
of this path. Then by the hypothesis of the 1nduct10n c 75 0 and c 7é 0

whence ¢;; (ia+1) # 0 by (3). As above we get c 7é 0 for all k with i, < k < m.

(7) .
The assertion for /;; follows immediately, since l;; = % # 0 if and only if cgj) # 0.
JJ

O

Our next lemma provides explicit formulae for the quantities arising in the IGA. To
this end we will define a diagonal matrix D = diag(dy, ..., d,) with |[D| = I such that
|b| = Db whence

max(d;[b]; + [a]) = [di[b]; + [a]| = [[B]:] + |[]]
for any symmetric interval [a].

Lemma 3

Let the IGA be applicable for [A] = I +[-R, R] € IR"™" and [b] € IR", and apply it
also to the real matriz C := I — R and the right-hand side w := |b| 4+ rad([b]). Define
the diagonal matriz D = diag(dy, ..., d,) € R"" by

g 1bizo,
Tl -1 i b <.



Then the quantities of the IGA can be represented as follows:

(A% = [Cc® 2 —CW] =T+ [-(T —C®), T — CW)] (4)
([4®) = c® (5)

BH = DE2IB] - w®,w®) = D (Jj]+ [~ (® — i), 0® - b])
= b4 [—(w® —[b]),w® — [b] (6)
max(D[p|?) = |[B]¥| = w® >0 (7)
max(D[z]%) = |[2]%=C 1w =:2">0 (8)

Proof

Lemma 2 guarantees that C®), k = 1,...,n, are M-matrices. By inspecting the

formulae for the IGA one easily sees that all the vectors w*)

We first prove (4) and (5). For k = 1 these formulae are trivial. Let them hold for
some k < n and choose i, j > k. Then A® = C® and ([A]*)) = C®) by assumption,
and

are nonnegative.

k k k k
1) aWlale @ lal el
Qj = Gy T MAX | gy | S G T T )y
a]kk <[a]kk>
(k)
(k) ik Ckj (k+1)
G~ T k) ij

Hence A®Y = 0+ Since A®) = I the same holds for [A]*+1) as can be seen from
Lemma 1. Therefore, rad([A]*+Y) = I — C*+V which yields (4) for k¥ + 1. From
[a]FD = [¢WD 5] for i £ 5, and from ([a]FT) = 5V we get (5).

i ij J i i
We now prove (6) and (7) which certainly are trivial if ¥ = 1. Let them hold for some
k < n. Then max(D[p]*)) = w® = |D[B]®)| = |[b]*)| by assumption and by |D| = I.
This implies

(k) (k)
max(@ ) = max(d (") - min (dz- e [blf‘f’) = w® — min ( o |[b1§f>|)
[aliy (lalix )
(k) (k)
— w® —min( [G]Ez) wl(ck>) ~w® 4 HCL]E’Z)'w/(ck)
(lalix ) (lalix )
(k)
_® _ Gk w® = 1)

i k
Cl(ck)

where we exploited the symmetry of [a]g,]:) and (4). With Lemma 1 one sees that
mid(d;[b)* ™) = mid(d;[6)*) = |b;| whence rad([p]¥™) = rad(d;[p]* V) = wH —

7 )

|b;]. This yields (6) and (7) for k + 1.

Now we address ourselves to (8). For k = n we get

max(dn[2]7) = |da[b]"1/([a])) = [16J71/([al}3)



which equals |[z]¢] as well as w(® /c(®) = z*. Here we used (5) and (7). Assume now
that max(d;[z]§) = |[#]§] = 2} holds for j=n,n—1,...,i4+ 1. Then

max(d;[z]%) = rnax(( Z d;lall; x]J) /[a]g”)

Jj=i+1

- mm((@wW—;ﬁjwﬁmﬂﬂ)ﬁd?>

- (|d )™ + Z [a)$P|I[2]¢ |> /{[al?)

Jj=t+1

_ (wgm— 5 cgyu;f) fe) =gt
j=i+1

where we exploited the symmetry of [a]g-l). Note that the next to the last formula
equals |d;[z]{’| = |[z]f].

O

Based on Lemma 3 the question arises quite naturally whether [2]“ also has a simple
representation. The answer is contained in our next theorem which shows that for this
purpose it is sufficient to solve the single real system C'v = w by means of the Gaussian
algorithm.

Theorem 2

Let the IGA be applicable for [A] := I +[-R,R] € IR"™" and [b] € IR", and let
C:=1-R, w:= b +rad([b]), z* := Crw. With C™ from the IGA define f; :=
l/cl(-?), i=1,...,n. Then for each i € {1,...,n} we have

i = min{z;, pizi}, Ty = max{Z;, uiii}, 9)
where
vii=—a} + filb+ D), Fii=af + filb— B, (10)
and
! € (0,1]
ST
Proof

From (4) we get ¢ <2 — ™. Hence ¢™ <1, 2fi—1>1>0and 0 < p; < 1.
Let



With Lemma 3 we obtain

=B — Y @) = b — 3 [l

j=i+1 j=i+1

and

Zi = Egn) - Z Cgb)l"; =b; — |Bz| + wz(n) - Z cﬁ?’x;‘ =b; — |61| + Cz('?)xf = Cz('?)fi-

j=it1 j=it1
In particular, sign(z;) = sign(;).

If z; > 0 then Z; > 0 and

76 = o = = filb = [l + o) = 5>

Qg Cii

If Z; < 0 then #; < 0 and by (4) we get

Zi Zi Zi - -

v —(n) n n
7 2—cy Ci

This proves the second equality in (9).

In order to prove the first one we replace [b] by —[b]. Then [y]G = IGA([4], — [b])
—IGA([A],[b]) = —[2]9. Applying the second equality of (9) to ¢ yields & = —g¢ =

— max{ i, il } = min{ =g, —pGi } with g := @ + fi(=b; — |b]) =

O

In combination with Lemma 3 Theorem 2 shows that for matrices of the form (1) and
arbitrary right—hand sides [b] IGA and PIGA can be performed without using interval
arithmetic.

In addition, this theorem exhibits a remarkable analogy to the following theorem of
Hansen and Rohn.

Theorem 3  (/9], [18])

Let [A] := I + [-R,R] € IR™™, [0] € IR", p(R) < 1,
[z]° the interval hull of the solution set S := {x| A € [A
for each i € {1,...,n} we have

(I = R)~". Denote by

M =
|, be[b : Az =0b} . Then

z; =min{ef, val}, 77 = max{a}, vt} (11)
where
o = =m0+ (D), & =] +ma(b— b)), @)= (M5 +rad([B]) ). (12)
and
v = o 1 (0, 1]
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Note that z* is the same vector in both theorems since M = C~'. By these theorems
it is easily seen that f; = my;; implies [2]¢ = [z]?. The following result is essentially
based on this fact. It shows that at least one bound of each component [z]¢ coincides

with the corresponding bound of [z].

Theorem 4

The assumptions of Theorem 2 imply

[zl = [l - (13)

In particular, with x* from Theorem 2 the equality [x]{ = [z]] = [—a},x}] holds if
b; = 0.

Proof

With the notation of the two preceding theorems the last column of M can be written
as y = C 'e™ where e(™ denotes the n' column of I. By Cramer’s rule y, =
det(C")/ det(C') with C” being the (n — 1) x (n — 1) leading principal submatrix of C.
Since det(C) = {7 - 52 .- ™ = det(C") - ™) one gets fup = Muy. Therefore, (13)
holds. The remaining part of the theorem follows directly from the Theorems 2 and

3 with &7 = 2f = 4; > 0if by > 0 and 27 = —xF = 2; < 0 if b; < 0 which implies
S =arifb; > 0and 28 = 2 = —xF if b; < 0.

O

A. Neumaier [15] remarked that the "Moreover’—part of the preceding theorem can also
be proved using the Theorems 4.4.8, 4.4.10 and 4.5.11 in [13] if one applies the first
of these theorems to the M-matrix A = C and if one takes into account the inclusion
IGA(A,[b]) € IGA([A], [b]) and AT[b] C [A)¥'[b]. Here, [A]¥[b] denotes the limit of the
Jacobi iteration for [A] and [b]. We leave the details to the reader.

By Theorem 4 it is easily seen that
[z]? = (IGA(P[A]PT,P[b]))n = (PTIGA(P[A]PT,P[b]))i

if P is a permutation matrix which effects an exchange of the rows/columns i and
n. Note that the assumptions of the Theorems 1 — 4 remain true when rows and
corresponding columns are permuted.

Unfortunately, m;; = fi, i =1,...,n— 1, does not hold, in general. Hence [z]% # [z]°,
i.e., the enclosure of S by [2]% is not optimal. This is even true in the 2 x 2 case and,
therefore, for tridiagonal matrices, as the following example shows.

12



Example 1

Let

Then

) 0 1
V\hthP.-(1 0>Weget

PTIGA (P[AIP", P[b]) = ( -

where the first component is now optimal.

O

Our next theorem completes Theorem 4. Reformulating it appropriately it fits into
the class of optimality results for the interval hull of the solution set S given in [3], [4],
[9], [10], [16] and [18].

Theorem 5

The assumptions of Theorem 2 imply
(i’ # [a]f (14)
if and only if the following two properties (i), (ii) or, equivalently (i), (iii) hold:

(ii) using the matrices L from the LU decomposition of C and M := (I — R)™! there
is an index k > i such that my, # 0 and l; # 0;

(iii) there is an index k > i such that the node i is connected to k in the graph
G(C), and, vice versa, the node k is connected to i, where in this latter case the
intermediate nodes i; of the path have to satisfy i; < i.

Proof

We use again the notations from the Theorems 2 and 3. By these theorems the
inequality (14) is equivalent to (i) and m; # f;. In order to derive an equivalent
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condition for m;; — fi = (M — ( "M~y # 0let C = LU = LC™ be the LU
decomposition of C. Then (C™)~t = C~'L = ML implies

M—(C™)y'=M(I—-L)>0. (15)

Hence (M — (C™)~1);; # 0 if and only if there is an index k > 7 such that mg, # 0
and l; # 0. Here, we exploited M > 0, I — L > 0; k > i is required since I — L is
a strictly lower triangular matrix. This proves the equivalence of (14) with (i), (ii).
Since by Lemma 2 (ii) is equivalent to (iii) Theorem 5 is proved.

O

Note that property (ii) can certainly never be fulfilled if i = n. This confirms (13).

Example 1 can be used to illustrate the preceding theorem. For i =1 the paths in (iii)
necessarily are 1 — 2 and 2 — 1, where no intermediate nodes occur.

Theorem 5 shows that [2]° = []¢ is true for 2 x 2 matrices of the form (1) if and only
if by = 0 or lali2 = 0 or [a]y; = 0. This is equivalent to ‘by = 0 or C is reducible’.
In particular, if b, # 0 and if C is irreducible then [2]¢ # [2]{ holds. This can be
generalized to n x n matrices of the form (1).

Corollary 2

Let the assumptions of Theorem 2 hold with n > 1, and let C' be irreducible. Then for
an arbitrary 1 < n }
[2]¢ = [2]] if and only if b; = 0. (16)

Proof

Since C'is irreducible and ¢ < n there are two paths in the graph G(C) which connect i
toi+1 and ¢+ 1 to ¢, respectively. Concatenate these paths to end up with¢ — ... —
t+1— ... — 1. Trace back this path starting with the right node ¢ until you find the
first node, say ig, which is larger than i. (At latest, i + 1 is such a node.) Then (iii) of
Theorem 5 is fulfilled with k = iy, i.e., (iii) always holds if C is irreducible. Thus (14)
is equivalent to (i) which proves (16).

O

Corollary 2 shows that for matrices of the form (1) the IGA often overestimates the

interval hull of S, a phenomenon which is well-known in the literature. (Cf. [13], p
160 ff, [14] or [20], e.g.)

For reducible matrices the following corollary clarifies the situation. It generalizes (13).

Corollary 3
a) Let the assumptions of Theorem 2 hold with n > 1, and let P be the permutation
matriz such that C = (C’ ) PCPT isthe reduczble normal form of C' where Om
denote the submatrices ofC’ according to (2). Let w be the permutation associated

with P and let iy, be the largest row number in C such that 7(ix) belongs to the

row numbers of Cyy (in C). Then 2] =[]}

1 °
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b) Let [A] be a triangular matriz of the form (1) with 0 & [al;, i =1,...,n. Then
the IGA is applicable and [z]% = [z]°.

Proof

a) If [z]¢ # [x]; then according to Theorem 5 there is a node s > iy such that i

is connected to s and vice versa. Hence 7(s) belongs to the row numbers of Crk
(in C') which implies the contradiction s < iy.

b) The applicability of the IGA follows from Theorem 1 d) since R is triangular and
ri; < 1 for each i due to 0 ¢ [a];;. Since C' is already in reducible normal form
(eventually after reflection on the counterdiagonal) and since the corresponding
diagonal submatrices are 1 x 1, the assertion follows directly from a).

O

The result in Corollary 3 b) shows that [2]¢ is optimal for triangular systems of the
form (1). It is not always optimal for interval systems which first have to be brought
to the form (1) by preconditioning when [2]“ is compared with the solution set of the
initial system. An example which illustrates this situation by a 4 x 4 matrix can be
found in [19].

The matrix of the subsequent example satisfies the assumptions of Corollary 3.
Example 2

Let

with

1 -1,1 ) ) -1,1] [-1,1
[4] = ( [_%,%] [ ] ) ) as in Example 1 and with [B] := ( {_171% %_1 1} ) .

Y

Furthermore, let [b] := (=1,1,—1,1)7 = b. Then [A] has the form (1) and the matrix

c=in=(g ¢

is already in reducible normal form where

C .= ( _
Moreover,

~ A [ MO (2 2 [ 12 16
M. =C _<N Y where M = 1 92 and N := 9 12 |-

15
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1 ) (cf. the previous example) .
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Obviously, M is nonnegative which shows that C'is an M-matrix, i.e., due to Theorem 1
the assumptions of the Theorems 2 and 3 are fulfilled. Now x* := M |b| = (4, 3, 32, 24)T,
and from Example 1 we easily deduce

m _ m_ )1 ifie{l,3} 1 1 ifie{1,3}
= _{% ific {24 “henee Jii= 0T\ 2 ifie {24}

With the notation of the Theorems 2 and 3 and with m;; =2 we get for: =1,...,4

1 ifie{1,3} 1
F= L ifie{2,4 0 T3
and
z; = (—4,1,-32,-20)", %, =(2,3,30,24)",
‘il.;f - (_47 17 _327 _20)T7 i‘f = (07 37 287 24)T7
whence

2)° = ((=4,2], [5.3], [-32,30], [-20,24]) ",
@) = (1-4,0], [£,3], [-32,28], [-20,24]) .
In particular, [z]S = [z]5, [#]{ = [2]] as predicted by Corollary 3 a) .

O

Now we address ourselves to the overestimation among [2]“ and [z]°. By the Theorems
2 and 3 this overestimation can be given explicitly when distinguishing six cases. (See
the proof of the subsequent theorem.) However, we prefer to state an optimal bound
which does not depend on the various cases.

Theorem 6

Let the assumptions of Theorem 2 hold. With the notation of the preceding theorems
we get for any i € {1,...,n}

my > fi, vi < i, (17)
g2, [2]7) < 2(mas — fi)1bil (18)

where equality can hold in (17) and in (18).

Proof

.From (15) the inequalities in (17) follow immediately. Choosing [A] = I yields equality
there.
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In order to prove (18) use the Theorems 2 and 3 to derive the following expressions for
a7 — 2 and ¥ — T, respectively.
Case b; > 0 :

27 <0, 2 <0 = 2 —zf =2(my — fi)bs;

2 <0, 27 >0 = 7 —af =1 —w)x] + 2(vmi — fi)bi;

>0,z >0 = z pi — Vi) + 2(vima; — i fi)bi
Since z7 > 0 implies a7} < 2myb; we get ¥ — 2 < 2(1 — vy)myb; + 2(vymy; - fi)bi =
2(my — fi)b; in the second subcase. In the third x> 0 implies z7 < 2f;b; hence
x? — 2 < 2(u; — vy) fibi + 2(vimy; — i fi)bi = 2vi(mi; — fi)bi < 2(my; — f;)b;. Together
with Theorem 4 this proves (18) when b; > 0. Note that in the estimates we used
Wi, v; € (0,1] and (17).
Case b; < 0 :

H
I

T9>0, 7 >0 = T8 -7 =2(fi — ma)b = 2(my — fi)|bil;
TZG >0, Tf <0 = iL'G T 1— l/l)ib';x< + Q(fl — l/lm“)lv)z,
i — vi)x; 4+ 2(pq fi — vimi;)b;.

a
I

=G
Ty

Hl

(3 Z (
TV<0,7 <0 = T = (

Since 77 < 0 implies z} < —2my;b; we get T -7 < —2(1— VZ)m”BZ +2(fi— Vimii)bi =
(fZ m”)b = 2(m” f)|b:| in the second subcase. In the third Z¢ < 0 implies
—2f;b; hence T¢ — TF < —2(pu; — v3) fibs + 2(uifi — vima)bs = 2vi(fi — my)b; =
21/l(mZZ fz)|b | < 2(mZZ — fz)|lv)l| Together with Theorem 4 this proves (18) including
the possibility of equality.

O

By means of the next lemma we are able to generalize our results to matrices of the
form [A] = D+[—R, R] where D is now an arbitrary regular real diagonal matrix. Such
matrices were first considered in [16]. Let [A] := D '[A] = I + |D !|[-R, R], [b] :=
D~b], and denote by [2]“, [£]° the associated quantities, corresponding to [z]“, [z]°
of the original data. Then [£]° = [z]°, and Lemma 4 a) shows [2] = [2]“. Therefore,
we can apply our preceding results to [A], [b] in order to get properties for [2]¢, [2]5.
We leave the details to the reader.

Lemma 4

Let [A] € IR, [b] € IR", and let D = diag(ds, ...,d,) € R"™" be a regular diagonal
matrixz. Then the following assertions hold.

a) IGA([A], [b]) ezists if and only if IGA(D[A], D[b]) exists. In this case both vectors

are equal, and for the intermediate quantities of the IGA one gets
(D[AD® = DA]®, (D)™ = D)™ . (19)
b) [A] is an H-matriz if and only if D[A] is an H -matriz.

c) [A] is reqular if and only if D™'[A] is regular.

17



Proof

a)

c)

We first prove (19) by induction. For k = 1 this is trivial. Let (3) hold for some
k < mn. Then
(DIADG ™ = dildl - dilal iy dilal; A@MM>
= @adw—wwk@;/@?) fa]lj ™

and, similarly,

(DRI = dibl — difalid b/ (delaliy)
= d; (1 ~ [P PO /1a) = il

Let [2]¢ = IGA([A], [0]) and [y]¢ = IGA(D[A], D[b]). Then

[yl = dalb)? /(dalaliy) = [a]7

n o

and [y]¥ = [2]¢ for each i > k + 1 implies

[mfz(@mﬁt—ﬁf<MMwwﬁ>mmwﬁhzuﬁ.

j=k+1

Let [A] be an H—matrix, i.e., ([A]) is an M—matrix. By a well-known result of Fan
[5] there is a vector u > 0 such that ([A])u > 0. Hence (D[A])u = |D|([A])u > 0,
and D[A] is an H-matrix, too. Applying this result to D~" and D[A] instead of D
and [A], respectively, proves the converse assertion since D' (D[A]) = (D' D)[A]
for diagonal matrices D. (Note that the interval matrix multiplication is not
associative, in general.)

is trivial.
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