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Abstract:

We prove a formula expressing the maximal cut in a graph in terms of solvability of a system
of linear inequalities −e ≤ Ax ≤ e (e being the vector of all ones) appended with a nonlinear
constraint ‖x‖1 ≥ 1.2

Keywords:
Graph, maximum cut, linear inequalities, norm.

1Equivalent to our “Dr”.
2Above: logo of interval computations and related areas (depiction of the solution set of the system

[2, 4]x1 + [−2, 1]x2 = [−2, 2], [−1, 2]x1 + [2, 4]x2 = [−2, 2] (Barth and Nuding [1])).
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1 Introduction

Maximum cut in a graph is a well known NP-complete problem. In the main result of this
report (Theorem 1) we prove a formula expressing the maximal cut in a graph in terms of
solvability of a system of linear inequalities

−e ≤ Ax ≤ e

(e being the vector of all ones) appended with a nonlinear constraint

‖x‖1 ≥ 1.

In this way the original discrete problem is recast as a continuous weakly nonlinear problem
which can be solved by nonlinear optimization techniques. A related decision problem of
determining whether the maximum cut exceeds a prescribed nonnegative integer ` is handled
in Corollary 3.

2 Maximum cut: definition

Let G = (N, E) be an undirected graph with set of nodes N = {1, . . . , n} and set of edges E.
Let m denote the cardinality of E.

Let AG = (aij) be given by aij = n if i = j, aij = −1 if i 6= j and the nodes i, j are
connected by an edge, and aij = 0 if i 6= j and i, j are not connected. Then AG is an
MC-matrix [4].

For S ⊆ N , define the cut c(S) as the number of edges in E whose one endpoint belongs
to S and the other one to N \ S. Then the maximum cut in G is defined by

mc(G) = max
S⊆N

c(S).

Computation of the maximum cut in a graph is known to be an NP-complete problem [2].

3 Maximum cut: characterization

We denote N = {0, 1, 2, . . .} (the set of nonnegative integers), e = (1, 1, . . . , 1)T ∈ Rn, and
we use the norm ‖x‖1 = eT |x| = ∑n

i=1 |xi|. Then we have this characterization which is the
main result of this report.

Theorem 1. For each undirected graph G there holds

mc(G) = max{ ` ∈ N | −e ≤ (4`− 2m + n2)A−1
G x ≤ e, ‖x‖1 ≥ 1 has a solution }.

Proof. The result follows from the relation

mc(G) = 1
4( max

z∈{−1,1}n
zT AGz + 2m− n2)

established in the proof of Theorem 3 in [4] and from Proposition 3 in [3]. 2

It remains to be shown how a maximum cut c(S) can be found.
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Theorem 2. Let x be any solution of the system

− e ≤ (4mc(G)− 2m + n2)A−1
G x ≤ e,

‖x‖1 ≥ 1.

Then the set
S = { i | xi ≥ 0 }

satisfies
c(S) = mc(G).

Proof. This description is a consequence of construction made in the proof of Theorem 3
in [4]. 2

4 Maximum cut: lower bounds

As immediate consequences of Theorems 1 and 2 we obtain these two corollaries.

Corollary 3. Let G be an undirected graph and ` a nonnegative integer. Then

mc(G) ≥ ` (4.1)

holds if and only if the system

− e ≤ (4`− 2m + n2)A−1
G x ≤ e, (4.2)

‖x‖1 ≥ 1 (4.3)

has a solution.

Corollary 4. If the system (4.2), (4.3), where ` is a nonnegative integer, has a solution x,
then the set

S = { i | xi ≥ 0 }
satisfies

c(S) ≥ `.

If (4.2), (4.3) has no solution, then

mc(G) < `.

5 Maximum cut: algorithm

Corollary 3 shows us a way how to verify (or disprove) the inequality (4.1) via solving a
system of inequalities of the type

− e ≤ Ax ≤ e, (5.1)

‖x‖1 ≥ 1. (5.2)

Such an algorithm, named basintnpprob [from BASic INTerval NP PROBlem], was de-
scribed in [5]. As proved there, the algorithm in a finite number of steps either finds a
solution to (5.1), (5.2), or states that no such solution exists.
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