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Abstract

It is proved that regularity of an interval matrix implies singularity of four
related interval matrices. The result is used to prove that for each nonsin-
gular point matrix A, either A or A−1 can be brought to a singular matrix
by perturbing only the diagonal entries by an amount of at most 1 each.
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1. Introduction and notation

Throughout this paper matrix and vector inequalities, as well as the ab-
solute value, are understood entrywise. Also, intervals and other interval
objects are denoted by bold letters in accordance with the informal stan-
dard [1].

As is well known, a square interval matrix

A = [A−D, A+D] = {B | |B −A| ≤ D },

where D ≥ 0, is called singular if it contains a singular matrix, and it is said
to be regular otherwise. Regularity/singularity is an important concept
in the classical matrix theory, and this is true for interval matrices too.
Interested readers can get acquainted with the details of research on this
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topic in the works [2, 3, 4, 5, 6] as well as in the surveys [7, 8, 9]. Some
generalizations to rectangular interval matrices are given in [10].

Common sense dictates that singularity and regularity exclude each
other. Yet in this paper we are going to show that regularity of an in-
terval matrix implies singularity of four interval matrices constructed from
it in a nontrivial way (we add the word “nontrivial” to emphasize that we do
not take into account interval matrices like [A−A, D−D] that are trivially
singular). For the proof of these results we need four auxiliary theorems
that are seemingly not generally known and that are listed in Section 2.
Our main result is then formulated in Theorem 5 which says that regularity
of A implies singularity of four interval matrices

[D − |A|, D + |A|],
[A−1D − I, A−1D + I],

[DA−1 − I, DA−1 + I],

[A−1 − |D−1|, A−1 + |D−1|],

I being the identity matrix. From this result we draw in Section 4 a purely
linear algebraic (i. e., non-interval) consequence: for each nonsingular square
matrix A either there exists a singular matrix S1 satisfying

|A− S1| ≤ I,

or there exists a singular matrix S2 satisfying

|A−1 − S2| ≤ I.

Last Section 5 brings some examples.

2. Auxiliary results

In this section we sum up four auxiliary results that will be used in the
proof of the main Theorem 5 in Section 3. The first two come from [4],
[11] and concern some properties of P -matrices. Let us recall that a square
matrix is called a P -matrix if all its principal minors are positive.

Theorem 1. If an interval matrix A is regular, then for each A1, A2 ∈ A,
A−1

1 A2 is a P -matrix.

Theorem 2. If A is a P -matrix, then Ax > 0 for some x > 0.
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The next result which can be found in [12] characterizes singular interval
matrices. It shows that in order to demonstrate existence of a singular
matrix in an interval matrix it is sufficient to find a solution of a nonlinear
vector inequality. In fact, singularity of all four interval matrices introduced
in Theorem 5 will be established in this way.

Theorem 3. An interval matrix [A −D, A + D] is singular if and only if
the inequality

|Ax| ≤ D|x| (1)

has a nontrivial (i.e., nonzero) solution. Moreover, for each x 6= 0 satisfy-
ing (1) there exists a singular matrix S ∈ [A−D, A+D] with Sx = 0.

The last auxiliary result proved in [12] shows a connection between regu-
larity of interval matrices and unique solvability of absolute value equations.

Theorem 4. If the interval matrix [A − |B|, A + |B|] is regular, then the
absolute value equation

Ax+B|x| = b

has a unique solution for each right-hand side b.

3. Regularity generates singularity

In the main result of this paper we show how regularity “generates” (or,
implies) singularity.

Theorem 5. If A = [A − D, A + D] is regular, then each of the interval
matrices

A1 = [D − |A|, D + |A|], (2)

A2 = [A−1D − I, A−1D + I], (3)

A3 = [DA−1 − I, DA−1 + I], (4)

A4 = [A−1 − |D−1|, A−1 + |D−1|] (5)

is singular, the last of them under an additional assumption of invertibility
of D.

Proof. (a) First we prove that under regularity assumption the interval
matrix A2 is singular. Denote C = A−1D. Notice that I−C = A−1(A−D),
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as a product of two nonsingular matrices, is nonsingular. Consider the
matrix

(I − C)−1(I + C) = (A−D)−1(A+D).

By Theorem 1 the matrix (A−D)−1(A+D) is a P -matrix, hence so is the
product (I − C)−1(I + C), and Theorem 2 implies existence of an x̃ > 0
satisfying

(I − C)−1(I + C)x̃ > 0. (6)

Put x = (I − C)−1x̃. Then (I − C)x = x̃ > 0, hence

Cx < x, (7)

and because of the identity

(I + C)(I − C) = (I − C2) = (I − C)(I + C),

from (6) we have

0 < (I − C)−1(I + C)x̃ = (I − C)−1(I + C)(I − C)x = (I + C)x.

The latter gives −x < Cx and, together with (7), yields

− x < Cx < x, (8)

that is
|Cx| < x. (9)

This inequality immediately implies x > 0, so that we can rewrite (9) as

|Cx| < I|x|,

which in the light of Theorem 3 means that the interval matrix [C−I, C+I]
is singular.

(b) Next we prove that the interval matrix A1 is singular. From (9) we
know that regularity of [A−D, A+D] implies existence of a positive vector
x satisfying

|A−1Dx| < x.

Hence we have

|Dx| = |AA−1Dx| ≤ |A||A−1Dx| < |A|x = |A||x|

and Theorem 3 implies singularity of [D − |A|, D + |A|].
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(c) To prove singularity of A3, we use the fact that by Theorem 4 reg-
ularity of [A − D, A + D] implies existence of a unique solution x∗ of the
absolute value equation

Ax−D|x| = e,

where e denotes the vector of all ones. Then

Ax∗ = D|x∗|+ e > D|x∗|,

so that x = Ax∗ satisfies

|DA−1x| ≤ D|A−1x| < x = I|x|, (10)

and Theorem 3 proves singularity of A3.
(d) Finally, to prove singularity of A4, we use the previously established

inequality (10) to show that under the assumed invertibility of D there holds

|A−1x| = |D−1DA−1x| ≤ |D−1|D|A−1x| ≤ |D−1||x|.

The latter enables us to employ again Theorem 3 to conclude that the in-
terval matrix A4 is singular.

In fact, we have proved a little more.

Theorem 6. If A is regular, then each of the interval matrices A1, A2,
A3, A4 contains a singular matrix S satisfying Sx = 0 for some x > 0.

Proof. Positive vectors satisfying |A−1Dx| < |x| or |DA−1x| < |x| were
constructed in parts (a), (c) of the previous proof and were then utilized in
parts (b), (d) as well.

We have this consequence.

Theorem 7. If A is regular, then for each j = 1, . . . , 4 no row of the lower
bound of the interval matrix Aj is positive and no row of its upper bound is
negative.

Proof. Let 1 ≤ j ≤ 4. According to Theorem 6 there exists a singular
matrix S ∈ Aj such that Sx = 0 for some x > 0. Assume to the contrary
that the ith row of the lower bound of Aj is positive for some i. Then the
ith row of S is positive, hence (Sx)i > 0 contrary to Sx = 0, a contradiction.
The second assertion concerning the upper bound can be proved in a similar
way.
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It turns out that in many cases singularity of A1 or A4 can be observed
immediately because of presence of the zero matrix.

Theorem 8. If [A−D, A+D] is regular and

D ≤ |A| (11)

holds, then 0 ∈ A1. Similarly, if

|A−1| ≤ |D−1| (12)

holds, then 0 ∈ A4.

Proof. Indeed, if (11) holds, then −|A| ≤ −D ≤ |A| which implies D −
|A| ≤ 0 ≤ D + |A| so that 0 ∈ A1. Similarly for A4.

4. Diagonally singularizable matrices

We shall say that a square point matrix A is diagonally singularizable if
there exists a singular matrix S of the same size satisfying

|A− S| ≤ I. (13)

This means that A can be brought to singularity by shifting (only!) its
diagonal entries by an amount of at most 1 each.

The definition (13) corresponds to the diagonal perturbation of the unit
magnitude. The point is that, with the help of a suitable perturbation of
only diagonal elements, any matrix can be made singular, but the magnitude
of the perturbation required may be arbitrarily large.

In fact, let an n×n-matrix A be given, and consider the diagonal matrices

I =


1 0

1
. . .

0 1

 and J =


−1 0

1
. . .

0 1

 ,

of the same size as A. It is clear that det I = 1 and det J = −1. If the
number κ > 1 is sufficiently large, then the matrix A + κI is almost equal
to κI, and det(A + κI) should be close to det(κI) = κn > 0. Similarly, if
the number θ > 1 is sufficiently large, then the matrix A+θJ is almost equal
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to θJ , and det(A + θJ) should be close to det(θJ) = −θn < 0. Therefore,
the continuous real function

g(t) = det
(
A+ tκI + (1− t)θJ

)
changes its sign at the interval t ∈ [0, 1] insofar as

g(0) = det
(
A+ θJ

)
and g(1) = det

(
A+ κJ

)
.

In view of the intermediate value theorem, we can conclude that there must
exist a number t? ∈ [0, 1] such that the matrix A + t?κI + (1 − t?)θJ has
zero determinant, i. e., it is singular. Moreover, it is made of the matrix A
by the perturbation t?κI+(1− t?)θJ affecting only diagonal elements of A.

So, any matrix can be made singular by a suitable perturbation of its
diagonal, but, of course, the magnitude of this perturbation plays an impor-
tant role in practice. In our approach, it makes sense to confine ourselves to
a fixed finite level of the perturbation magnitude, and the unit is the most
natural choice. Then, being interested in investigating the specific magni-
tude of the diagonal perturbation, we can scale it up to a perturbation of a
unit value and do the same with the matrix under study.

Investigation of the effect that perturbations of only diagonal elements
exert on a matrix can be very important for practical reasons. One of the
most popular interpretations of a square matrix is known to be a table of
numbers that characterize the interrelation (interaction) between elements
of a finite set, which can be, e. g., material flows from one element to another,
mutual forces or impacts and such like. At the intersection of the ith row
and the jth column of the matrix, we specify the measure of the mutual
connection (interaction) of the ith and jth elements of the considered set.
Then the diagonal elements correspond to the connections (interactions) of
the elements with themselves. The question under study about the influence
of diagonal perturbations on the matrix is thus equivalent to the question of
how the connections of the elements with themselves affects the system. The
concept of diagonal singularizability of a matrix helps studying this issue.

The next theorem indicates that diagonally singularizable matrices occur
more frequently than one could expect.

Theorem 9. For each nonsingular square matrix A, either A or A−1 is
diagonally singularizable.

Proof. Consider the auxiliary interval matrix

B = [A−1 − I, A−1 + I].
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If B is singular, then there exists a singular matrix satisfying |A−1−S| ≤ I
which means that A−1 is diagonally singularizable. If B is regular, then by
Theorem 5, case (3), the interval matrix [A− I, A+ I] is singular, hence A
is diagonally singularizable.

0 2 4 6

2

4

Figure 1: Points of the hyperbola can be reduced to singularity by unit shifting

This is a generalization of a phenomenon that is almost obvious in the
one-dimensional case, when we have just 1× 1-matrix, i. e., a scalar. Fig. 1
shows an illustration of the effect. Points of the hyperbola y = 1/x, having
the coordinates (x, x−1), can be reduced to singularity, when one of the
coordinates becomes infinite, by shifting by at most 1 along any coordinate
direction.

5. Examples

In this section we give two examples. Regularity or singularity of interval
matrices was checked by the Matlab file regising.m available at http:

//uivtx.cs.cas.cz/~rohn/other/regising.m. It is invoked by

>> S = regising(A,D)

If the output argument S is nonempty, then S is a singular matrix within
[A−D, A+D]; if it is empty, then [A−D, A+D] is regular.

Consider a randomly generated regular 3× 3 interval matrix
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A =

[ 4.5489 4.7230] [-8.7167 -8.3588] [-3.9384 -3.8631]

[-1.6413 -1.5949] [-8.4549 -8.2373] [-9.6674 -9.6564]

[ 6.2962 6.6055] [-3.0349 -2.7066] [ 1.1286 1.3471]

As it satisfies (11), the interval matrix A1 (denoted here by A1) contains the
zero matrix by Theorem 8, but our file regising.m finds instead another
singular matrix S1 in A1. To confirm that S1 is singular, we computed, by
Matlab, its rank under the variable rnk1:

A1 =

[-4.5489 4.7230] [ -8.3588 8.7167] [-3.8631 3.9384]

[-1.5949 1.6413] [ -8.2373 8.4549] [-9.6564 9.6674]

[-6.2962 6.6055] [ -2.7066 3.0349] [-1.1286 1.3471]

S1 =

0.0870 0.1789 0.0377

0.0247 0.1013 -0.0032

0.1547 0.1642 0.1092

rnk1 =

2

Next, all off-diagonal entries of the interval matrices A2 and A3 are point
intervals by (3), (4) and the file finds a singular matrix in each of them:

A2 =

[-0.9555 1.0445] [ 0.0340 0.0340] [ 0.0375 0.0375]

[ 0.0305 0.0305] [-0.9913 1.0087] [ 0.0315 0.0315]

[-0.0362 -0.0362] [-0.0244 -0.0244] [-1.0341 0.9659]

S2 =

0.0445 0.0340 0.0375

0.0305 0.0087 0.0315

-0.0362 -0.0244 -0.0318

rnk2 =

2

A3 =
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[-1.1078 0.8922] [ 0.0530 0.0530] [ 0.1043 0.1043]

[-0.0645 -0.0645] [-0.9671 1.0329] [ 0.0582 0.0582]

[-0.0852 -0.0852] [ 0.0351 0.0351] [-0.9060 1.0940]

S3 =

-0.1078 0.0530 0.1043

-0.0645 0.0341 0.0582

-0.0852 0.0351 0.0940

rnk3 =

2

Next, the interval matrix A4 again contains the zero matrix, and again the
file finds another singular matrix S4:

A4 =

[-67.3660 66.6764] [-81.3642 81.7584] [-18.5441 19.4486]

[-10.8322 9.7395] [-22.1849 22.7446] [ -1.9505 2.8761]

[-78.9143 79.9736] [-82.1085 81.3520] [-32.9024 31.9514]

S4 =

-0.3448 0.1971 0.4522

-0.5463 0.2799 0.4628

0.5994 -0.3066 -0.5040

rnk4 =

2

Finally, to illustrate Theorem 9, consider a random 6× 6 point matrix

A =

-1.2807 -1.7660 1.4231 0.0250 4.2500 3.5528

6.4249 6.6608 -7.1955 -5.3853 -5.8594 -3.7186

3.2943 -0.3531 -7.5444 2.5959 -5.6015 8.3778

2.9109 -9.7564 0.7534 -2.0974 8.7650 -7.4650

6.8797 7.9521 -0.2415 8.6383 9.1531 8.8403

8.9885 -4.8639 -0.4357 0.5714 3.6866 7.9766

Here the interval matrix [A− I, A+ I] is regular, hence A is not diagonally
singularizable, and we know from Theorem 9 that A−1 (denoted here by
Ainv) must be diagonally singularizable.
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Ainv =

-0.1380 0.0093 -0.0410 -0.0039 0.0115 0.0925

0.0390 0.0457 -0.0395 -0.0372 0.0330 -0.0258

-0.1137 -0.0496 -0.1197 -0.0770 -0.0202 0.1035

-0.2096 -0.0929 0.0526 0.0322 0.0527 -0.0334

0.1500 0.0344 0.0018 0.0483 0.0353 -0.0466

0.1187 0.0054 0.0110 -0.0470 -0.0140 0.0350

S =

-0.1380 0.0093 -0.0410 -0.0039 0.0115 0.0925

0.0390 0.0457 -0.0395 -0.0372 0.0330 -0.0258

-0.1137 -0.0496 -0.1197 -0.0770 -0.0202 0.1035

-0.2096 -0.0929 0.0526 0.0322 0.0527 -0.0334

0.1500 0.0344 0.0018 0.0483 -0.0740 -0.0466

0.1187 0.0054 0.0110 -0.0470 -0.0140 0.0350

rnk =

5

We can see that in fact a single change at the (5, 5)th entry of Ainv was
sufficient to turn it into a singular matrix.
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