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Abstract

Described is a not-a-priori-exponential algorithm which for each n×n interval matrix A
and for each interval n-vector b in a finite number of steps either computes the interval
hull of the solution set of the system of interval linear equations Ax = b, or finds a
singular matrix S ∈ A.
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1. Introduction

This paper is dedicated to one of the most classical problems in interval analysis,
namely computation of the interval hull of the solution set of a system of interval linear
equations (which is an NP-hard problem). After introducing the notations being used
in Section 2, we describe in Section 3 the problem itself and some results relevant to
it. In Section 4 we quote a basic underlying result for computing enclosures of the so-
lution set, which is then improved in Section 5 to yield instead the interval hull itself.
In the following Section 6 we explain how to solve efficiently the absolute value matrix
equations formulated in the main result of Section 5, and in Section 7 we give a detailed
MATLAB-style description of the algorithm which, as the reader will see, is rather com-
plex, but according to this author’s experience, also efficient, and has been included into
the INTERVALHULL.P file of the free software package VERSOFT [1].

2. Notations

We use the following notations. The ith row of a matrix A is denoted by Ai•, the jth
column by A•j . Matrix inequalities, as A ≤ B or A < B, are understood componentwise.
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The absolute value of a matrix A = (aij) is defined by |A| = (|aij |). The same notations
also apply to vectors that are considered one-column matrices. Minimum or maximum
of a finite set of vectors is also understood componentwise. I is the unit matrix, ej is
the jth column of I, and e = (1, . . . , 1)T is the vector of all ones. Yn = {y | |y| = e} is
the set of all ±1-vectors in Rn, so that its cardinality is 2n. Vectors y, z ∈ Yn are called
adjacent if they differ in exactly one entry. Obviously, y, z ∈ Yn are adjacent if and only
if y = z − 2zjej for some j. For each x ∈ Rn we define its sign vector sgn(x) by

(sgn(x))i =
{

1 if xi ≥ 0,
−1 if xi < 0 (i = 1, . . . , n), (1)

so that sgn(x) ∈ Yn. For each z ∈ Rn we denote

Tz = diag (z1, . . . , zn) =




z1 0 . . . 0
0 z2 . . . 0
...

...
. . .

...
0 0 . . . zn


 , (2)

and Rn
z = {x | Tzx ≥ 0} is the orthant prescribed by the ±1-vector z ∈ Yn. An interval

matrix is a set of matrices

A = {A | |A−Ac| ≤ ∆ } = [Ac −∆, Ac + ∆],

and an interval vector is a one-column interval matrix

b = { b | |b− bc| ≤ δ } = [bc − δ, bc + δ].

3. The problem

Given an n × n interval matrix A = [Ac − ∆, Ac + ∆] and an interval n-vector
b = [bc − δ, bc + δ], the solution set of the system of interval linear equations Ax = b is
defined as

X(A,b) = {x | Ax = b for some A ∈ A, b ∈ b }.
The Oettli-Prager theorem [2] asserts that the solution set is described by

X(A,b) = {x | |Acx− bc| ≤ ∆|x|+ δ }.
If A is regular (i.e., each A ∈ A is nonsingular), then X(A,b) is compact and connected
(Beeck [3]); if A is singular (i.e., it contains a singular matrix), then each component
of X(A,b) is unbounded (Jansson [4]). The solution set is generally of a complicated
nonconvex structure. In practical computations, therefore, we look for an enclosure of
it, i.e., for an interval vector x satisfying

X(A,b) ⊆ x.

If A is regular, then the intersection of all enclosures of X(A,b) forms an interval vector
which is called the interval hull (sometimes simply “hull”) of X(A,b) and is denoted by
x(A,b). Obviously,

x(A,b) = [x, x],
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where

xi = min{xi | x ∈ X(A,b) }, (3)
xi = max{xi | x ∈ X(A,b) } (4)

(i = 1, . . . , n). If A is singular, then X(A,b) is either empty (a rare case), or unbounded
and the interval hull is not defined in this case.

Computing the interval hull is NP-hard (original proof by Rohn and Kreinovich in
[5], simplified proof in [6], Theorem 2.38). Exponential algorithms for its computation
were suggested by Oettli [7], Nickel [8] and Rohn [9]. Jansson [4] was first to propose the
idea of “going along the orthants” having a nonempty intersection with X(A,b), and
bound the intersections, which are convex polytopes, by a linear programming technique.
His method has the additional advantage that it does not require verification of regu-
lariy/singularity in advance because it is verified (or disproved) on the way. In this paper
we describe an algorithm based on a modification of his going-along-the-orthants idea
which, however, employs a new technique of enclosing the intersections of the solution
set with orthants by means of solutions of certain absolute value matrix equations. The
main advantage of this approach consists in the fact that it allows for a verified imple-
mentation (where the result is true despite being achieved by means of finite precision
arithmetic). This implementation was done in the INTERVALHULL.P file of the freely
available verification software VERSOFT [1] written in INTLAB, a MATLAB toolbox
developed by Rump [10]. INTERVALHULL, which was created between 2000 and 2008
and whose source file has about 1000 lines (partly due to additional verification routines
included), is available there as a p-coded file only; here we disclose the algorithm behind
it for the first time.

4. Underlying result

The starting point of our considerations is the following result which has been proved
in [11, Thm. 3] (without using xz and xz that are introduced here in (7), (8), so that
the original formulation was more cumbersome).

Theorem 1. Let A = [Ac −∆, Ac + ∆] be an n× n interval matrix, b = [bc − δ, bc + δ]
an interval n-vector, and let Z be a subset of Yn having the following properties:

(a) sgn(x0) ∈ Z for some x0 ∈ X(A,b),

(b) for each z ∈ Z the inequalities

(QAc − I)Tz ≥ |Q|∆, (5)
(QAc − I)T−z ≥ |Q|∆ (6)

have matrix solutions Qz and Q−z, respectively; denote

xz = Qzbc + |Qz|δ, (7)
xz = Q−zbc − |Q−z|δ, (8)

(c) if z ∈ Z, xz ≤ xz, and (xz)j(xz)j ≤ 0 for some j, then z − 2zjej ∈ Z.
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Then A is regular and
X(A,b) ⊆ [min

z∈Z1
xz, max

z∈Z1
xz] (9)

holds, where
Z1 = { z ∈ Z | xz ≤ xz }.

There are several facts, established in [11], needed for understanding the procedure
involved:

(i) the set Z of ±1-vectors z representing the orthants Rn
z is constructed recursively

in steps (a) and (c),

(ii) X(A,b) ∩ Rn
z = ∅ for each z ∈ Z − Z1,

(iii) X(A,b) ∩ Rn
z ⊆ [xz, xz] for each z ∈ Z1,

(iv) if the procedure of constructing Z is brought to conclusion (i.e., all the Qz’s and
Q−z’s needed have been found), then

X(A,b) ⊆
⋃

z∈Z1

[xz, xz]. (10)

In the main result of this paper we show that if the inequalities (5), (6) are always solved
as equations, then the enclosure in (9) becomes the interval hull of X(A,b).

5. Main result

Theorem 2. Let A = [Ac −∆, Ac + ∆] be an n× n interval matrix, b = [bc − δ, bc + δ]
an interval n-vector, and let Z be a subset of Yn having the following properties:

(a) sgn(x0) ∈ Z for some x0 ∈ X(A,b),

(b’) for each z ∈ Z the equations

QAc − |Q|∆Tz = I, (11)
QAc − |Q|∆T−z = I (12)

have matrix solutions Qz and Q−z, respectively; denote

xz = Qzbc + |Qz|δ, (13)
xz = Q−zbc − |Q−z|δ, (14)

(c) if z ∈ Z, xz ≤ xz, and (xz)j(xz)j ≤ 0 for some j, then z − 2zjej ∈ Z.

Then A is regular and
x(A,b) = [min

z∈Z1
xz, max

z∈Z1
xz] (15)

holds, where
Z1 = { z ∈ Z | xz ≤ xz }.
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Proof. If Qz and Q−z solve (11) and (12), respectively, then they satisfy

(QzAc − I)Tz = |Qz|∆,

(Q−zAc − I)T−z = |Q−z|∆,

so that they are solutions of (5), (6). Thus, the assumption (b’) implies validity of the
assumption (b) of Theorem 1, hence all three assumptions of Theorem 1 are met and
consequently A is regular and

X(A,b) ⊆ [min
z∈Z1

xz, max
z∈Z1

xz] (16)

holds. Denote

[x, x] = x(A,b), (17)
[x, x] = [min

z∈Z1
xz, max

z∈Z1
xz]. (18)

In view of (16), [x, x] is an enclosure of X(A,b) and since x(A,b) is the intersection of
all the enclosures, we have

[x, x] ⊆ [x, x],

in particular
x ≤ x. (19)

Take an i ∈ {1, . . . , n}. Then (19) implies xi ≤ xi. To prove the converse inequality, let
z ∈ Z1 be such that

xi = (xz)i

(by (18)), and define
qT = eT

i Qz

and
y = sgn(q),

so that |q| = Tyq. Premultiplying the equation (11) by eT
i , we get

qT Ac − |q|T ∆Tz = qT Ac − qT Ty∆Tz = qT (Ac − Ty∆Tz) = eT
i ,

hence
qT = eT

i (Ac − Ty∆Tz)
−1

(since y, z are ±1-vectors, so that Ac − Ty∆Tz ∈ A, and we have already proved that A
is regular). Now we have

xi = (xz)i = eT
i (Qzbc + |Qz|δ) = qT bc + qT Tyδ

= eT
i (Ac − Ty∆Tz)

−1(bc + Tyδ) = xi,

where x is the solution of
(Ac − Ty∆Tz)x = bc + Tyδ
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with Ac − Ty∆Tz ∈ A (as we already know) and bc + Tyδ ∈ b (since y is a ±1-vector).
This shows that x ∈ X(A,b), hence xi is attained over X(A,b), and in view of (4) this
means that xi ≤ xi, so that xi = xi. Since i was arbitrary, we finally obtain that

x = x.

The equality x = x is proved in a similar way. This shows that

x(A,b) = [x, x],

which completes the proof.

6. Computation of the matrices Qz

In the light of the main result, what remains to be resolved is the problem of solving
the matrix equation

QAc − |Q|∆Tz = I (20)

(and the related equation (12) which is of the same form). Take an i ∈ {1, . . . , n} and
put

xT = Qi•,

then x solves
xT Ac − |x|T ∆Tz = eT

i

and thus also

AT
c x− Tz∆T |x| = ei. (21)

The equation (21) is an equation of the form

Ax + B|x| = b (22)

(A,B ∈ Rn×n, b ∈ Rn), which is called an absolute value equation. In [12], [13] we have
developed a very efficient algorithm absvaleqn for its solution, reproduced here in Fig. 3
in a MATLAB-like form. It is called by

[x, S] = absvaleqn(A,B, b)

and its main feature is that for each data A,B, b, it produces in a finite number of steps
either a solution x of the equation (22), or a singular matrix S satisfying |S − A| ≤ |B|
(but not both; the unassigned variable is outputted as [ ], an empty matrix/vector).Thus,
our equation (21) can be solved by

[x, S] = absvaleqn(AT
c ,−Tz∆T , ei)

and the output is either a vector x with xT = (Qz)i•, or a singular matrix S satisfying

|S −AT
c | ≤ | − Tz∆T | = ∆T ,

so that
|ST −Ac| ≤ ∆
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and ST is a singular matrix in A. In this way we may compute the matrix Qz row-by-
row. This procedure is formalized in the MATLAB-like function qzmatrix placed in
Fig. 2 as a subfunction of the main function intervalhull to be explained in the next
section. From what has been said above it follows that the function qzmatrix called by

[Qz, S] = qzmatrix(A, z)

in a finite number of steps either finds a solution Qz of the matrix equation (20), or
produces a singular matrix S ∈ A.

7. The algorithm

The algorithm intervalhull, described in MATLAB-like style in Figs. 1 through
3, consists of the main function intervalhull and of two subfunctions qzmatrix and
absvaleqn. The main function intervalhull closely copies Theorem 2, the subfunction
qzmatrix is based on the results of Section 6, and the subfunction absvaleqn comes from
[13]. Since the subfunction absvaleqn terminates in a finite number of steps (Theorem 3
in [13]) and the same thus holds for qzmatrix, we have this finite termination theorem.

Theorem 3. For each n× n interval matrix A and for each interval n-vector b the al-
gorithm intervalhull (Figs. 1–3) in a finite number of steps either computes the interval
hull x of the solution set of the system of interval linear equations Ax = b, or produces
a singular matrix S ∈ A (but not both).

The algorithm is not-a-priori-exponential since it requires 2n · card(Z) calls of the
subfunction absvaleqn which itself takes about 0.1 · n steps on the average [12] (where
under a “step” we understand a single pass through the while ... end loop between the
lines (11) and (31) of the function absvaleqn in Fig. 3). For example, if the solution
set X(A,b) is a part of the interior of a single orthant Rn

z , then only two matrices Qz

and Q−z are to be computed, so that only 2n calls of absvaleqn are made.

8. Implementation

The algorithm has been implemented in the VERINTERVALHULL.M [14] function
of the freely available verification software package VERSOFT [1].
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