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Abstract

It is proved that the solution set of a system of interval linear equations
Ax = b with an n × n regular interval matrix A and a thick right-hand
side b is homeomorphic to the unit cube [−1, 1]n, and an explicit homeo-
morphism is described.
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1 Introduction

In general topology, a one-to-one mapping f : X → Y of a topological space X onto
a topological space Y is called homeomorphism if both f and f−1 are continuous. If
there exists a homeomorphism between X and Y , then the two topological spaces
are called homeomorphic. As the name suggests, homeomorphic topological spaces are
considered to be of “similar shape” because they share the same topological properties.
Below, when speaking of homeomorphisms of subsets of Rn, we consider these sets to
be endowed with topology induced by the standard Euclidean topology of Rn, i.e.,
open sets in X are just all the sets of the form X ∩O, where O is an open set in Rn.

As the main result of this paper we prove that the solution set of a system of
interval linear equations is homeomorphic to the unit cube. Given a square interval
matrix

A = [Ac −∆, Ac + ∆] = {A | Ac −∆ ≤ A ≤ Ac + ∆ }
which will be assumed throughout to be regular (i.e., each A ∈ A is nonsingular) and
an interval n-vector

b = [bc − δ, bc + δ] = { b | bc − δ ≤ b ≤ bc + δ },
∗Submitted: (insert date); Revised: (insert date); Accepted:(insert date).
†...

1



2 J. Rohn, Solution Set is Homeomorphic to the Unit Cube

the solution set of a formally written system of interval linear equations

Ax = b

is defined as

X(A, b) = {A−1b | A ∈ A, b ∈ b }.
The basic Oettli-Prager theorem [5] describes the solution set by

X(A, b) = {x | |Acx− bc| ≤ ∆|x|+ δ }. (1)

The presence of an absolute value of x (defined by |x| = (|xi|) for x = (xi)) on the
right-hand side in (1) causes the solution set to be generally of a complicated nonconvex
structure (see the example given in Section 4). Yet in Theorem 2.2 below we show
that if A is regular n × n and b is thick (i.e., δ > 0), then there exists an explicit
homeomorphism f of X(A, b) onto the unit cube [−1, 1]n. We have not been able to
express the inverse homeomorphism f−1 by a closed-form formula, but we present an
algorithm which for each y ∈ [−1, 1]n computes the value of f−1(y) in a finite number
of steps. A 2× 2 example is given in Section 4 to demonstrate the workings of f and
f−1. Finally in Section 5 we show by means of a counterexample that the assumption
of δ > 0 in Theorem 2.2 cannot be dropped. We use the notation

Ty =




y1 0 . . . 0
0 y2 . . . 0
...

...
. . .

...
0 0 . . . yn


 ;

I is the identity matrix and e is the vector of all ones. Notice that [−1, 1]n = [−e, e].

2 The homeomorphism

In the proof of the main theorem we shall essentially use the following result proved
in [7, Prop. 4.2].

Theorem 2.1. Let A, B ∈ Rn×n and let the interval matrix [A − |B|, A + |B|] be
regular. Then for each right-hand side b ∈ Rn the absolute value equation

Ax + B|x| = b (2)

has a unique solution.

Now the main result of this paper is formulated as follows.

Theorem 2.2. Let A be regular and let δ > 0. Then the mapping

f(x) =

(
(Acx− bc)i

(∆|x|+ δ)i

)n

i=1

(3)

is a homeomorphism of X(A, b) onto the unit cube [−1, 1]n.
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Proof: We shall carry out the proof in several steps. Let Y = [−1, 1]n.
(a) f maps X(A, b) into Y . It follows from the Oettli-Prager description (1) that

−1 ≤ (Acx− bc)i

(∆|x|+ δ)i
≤ 1 (i = 1, . . . , n)

holds for each x ∈ X(A, b), hence f maps X(A, b) into Y .
(b) f maps X(A, b) onto Y . Let y ∈ Y . Then |Ty∆| ≤ ∆, hence

[Ac − |Ty∆|, Ac + |Ty∆|] ⊆ [Ac −∆, Ac + ∆],

so that regularity of [Ac −∆, Ac + ∆] implies that of [Ac − |Ty∆|, Ac + |Ty∆|], hence
by Theorem 2.1 the nonlinear equation

Acx− Ty∆|x| = bc + Tyδ (4)

has a unique solution x. This x belongs to X(A, b) because

|Acx− bc| = |Ty(∆|x|+ δ)| ≤ ∆|x|+ δ,

and
(Acx− bc)i

(∆|x|+ δ)i
= yi

holds for each i by (4), hence f(x) = y.
(c) f is one-to-one. If f(x′) = f(x′′) = y for some x′, x′′ ∈ X(A, b), then both x′

and x′′ must solve the equation (4), so that from the above-mentioned uniqueness of
its solution it follows that x′ = x′′, which proves that f is bijective.

(d) f and f−1 are continuous. Continuity of f follows from (3). We prove continu-
ity of f−1 by contradiction. Assume that f−1 is not continuous at some y ∈ Y , so that
there exists a sequence {yj} of points of Y such that yj → y, but f−1(yj) 6→ f−1(y).
Denote x = f−1(y) and xj = f−1(yj) for each j. Since xj 6→ x, by definition of limit
there exists an ε > 0 and a subsequence {xjk} such that

‖xjk − x‖2 ≥ ε (5)

for each k (we use the Euclidean norm ‖x‖2 =
√

xT x). Because X(A, b) is compact
(Beeck [1]), {xjk} contains a convergent subsequence {xjk`

}, xjk`
→ x∗ ∈ X(A, b),

and taking the limit in (5) for jk` → ∞ yields ‖x∗ − x‖2 ≥ ε > 0, so that x∗ 6= x.
Now, xjk`

→ x∗ in view of continuity of f implies yjk`
= f(xjk`

) → f(x∗), but also
yjk`

→ y, hence f(x∗) = y = f(x) where x∗ 6= x, a contradiction.
This proves that f is a homeomorphism of X(A, b) onto Y .
We note that part (d) of the proof follows from a more general assertion stating

that if f is a continuous one-to-one mapping of a compact set X ⊂ Rn onto Y ⊂ Rn,
then Y is also compact and f−1 is continuous, so that f is a homeomorphism (see [9,
Thms. 4.13, 4.17]). But we have preferred to deliver an elementary proof. In part (b)
of the proof we have simultaneously proved the following characterization of f−1.

Theorem 2.3. Under assumptions and notation of Theorem 2.2, for each y ∈ [−1, 1]n

we have
f−1(y) = x,

where x is the unique solution of the equation

Acx− Ty∆|x| = bc + Tyδ. (6)
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As a simple consequence of the main result we obtain that under our assumptions
any two solution sets of interval linear equations are homeomorphic.

Theorem 2.4. If A, A′ are regular interval matrices of the same size and b, b′ are
matching thick interval vectors, then the solution sets X(A, b) and X(A′, b′) are home-
omorphic.

Proof: If f : X(A, b) → [−1, 1]n and g : X(A′, b′) → [−1, 1]n are homeomorphisms
whose existence under our assumptions is guaranteed by Theorem 2.2, then g−1 ◦ f is
a homeomorphism between X(A, b) and X(A′, b′).

Notice that the unit cube itself is a solution set of interval linear equations. Indeed,
it is the solution set of

[I, I]x = [−e, e].

If we introduce the Hadamard division of two vectors a = (ai), b = (bi) ∈ Rn by

a

b
=

(
ai

bi

)n

i=1

(assuming that bi 6= 0 for each i), then we may rewrite (3) in a “vectorized” form

f(x) =
Acx− bc

∆|x|+ δ
.

3 The inverse homeomorphism

By Theorem 2.3, for each y ∈ [−1, 1]n there holds f−1(y) = x, where x is the unique
solution of the equation (6). This equation can be efficiently solved by the algorithm
absvaleqn described in [7], [8] which is attached here in the form of an executable
MATLAB file (see next page). The algorithm is invoked by

[x,S]=absvaleqn(A,B,b)

and in a finite number of steps it returns either a solution x of (2), or a singular matrix
S satisfying |S − A| ≤ |B|. In our case regularity of A precludes existence of such a
singular matrix, hence we get x simply by using

x=absvaleqn(Ac, -diag(y)*Delta, bc+diag(y)*delta)

where Ac, Delta, bc and delta are MATLAB variables corresponding to Ac, ∆, bc

and δ, respectively. As regards the number of steps (passes through the while ...

end loop of the algorithm), it has been shown in [7] on a set of randomly generated
100,000 examples of various sizes that the average number of steps was about 0.1n,
where n is the matrix size.

In [6] we denoted the solution of (6) for y ∈ {−1, 1}n by xy and we proved there
that the interval hull x(A, b) of the solution set X(A, b) (i.e., the minimal enclosure
of X(A, b) w.r.t. inclusion) is equal to the interval hull of the finite set of xy’s. In this
way we may reformulate the result as

x(A, b) = [ min
y∈{−1,1}n

f−1(y), max
y∈{−1,1}n

f−1(y)] (7)

(entrywise minimum/maximum); notice that {−1, 1}n, not [−1, 1]n, is used in (7).

Observe also that f−1(0) = A−1
c bc.
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function [x,S,iter]=absvaleqn(A,B,b) % ABSolute VALue EQuatioN

%

% ~isempty(x): x solves A*x+B*abs(x)=b (A,B square), S is empty,

% ~isempty(S): S is a singular matrix satisfying abs(S-A)<=abs(B), x is empty.

% iter: number of iterations (it may be zero).

%

% Copyright 2005-2013 Jiri Rohn (rohn@cs.cas.cz)

%

b=b(:); n=length(b); I=eye(n,n);

ep=n*(max([norm(A,inf) norm(B,inf) norm(b,inf)]))*eps;

x=[]; S=[]; iter=0;

if rank(A)<n, S=A; return, end

x=A\b; z=sgn(x);

if rank(A+B*diag(z))<n, S=A+B*diag(z); x=[]; return, end

x=(A+B*diag(z))\b;

C=-inv(A+B*diag(z))*B;

X=zeros(n,n);

r=zeros(1,n);

while any(z.*x<-ep)

k=find(z.*x<-ep,1);

iter=iter+1;

if 1+2*z(k)*C(k,k)<=0

S=A+B*(diag(z)+(1/C(k,k))*I(:,k)*I(k,:)); x=[]; return

end

if ((k<n)&&(all(r(k)>r(k+1:n))))||((k==n)&&(r(k)>0))

x=x-X(:,k); z=sgn(x);

ct=A*x;

jm=abs(B)*abs(x);

y=zeros(1,n);

for i=1:n

if jm(i)>ep, y(i)=ct(i)/jm(i); else y(i)=1; end

end

S=A-diag(y)*abs(B)*diag(z); x=[]; return

end

X(:,k)=x;

r(k)=iter;

z(k)=-z(k);

alpha=2*z(k)/(1-2*z(k)*C(k,k));

x=x+alpha*x(k)*C(:,k);

C=C+alpha*C(:,k)*C(k,:);

end

function z=sgn(x) % SiGN vector of x (column)

n=length(x);

z=zeros(n,1);

for j=1:n

if x(j)>=0, z(j)=1; else z(j)=-1; end

end
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4 Example

To visualize workings of both homeomorphisms, consider the well-known Hansen’s
example in [3] (

[2, 3] [0, 1]
[1, 2] [2, 3]

)
x =

(
[ 0, 120]
[60, 240]

)
.

The left-hand side interval matrix is regular by Beeck’s criterion [2] because %(|A−1
c |∆) =

0.6364 < 1, and δ > 0.
First, we performed the following procedure (only relevant part of the code is

shown):

for i=1:100000

A=Ac+(2*rand(n,n)-1).*Delta;

b=bc+(2*rand(n,1)-1).*delta;

x=A\b;

y=(Ac*x-bc)./(Delta*abs(x)+delta);

plot(y(1),y(2));

end

(n = 2 throughout). As it can be seen, the file constructs 100,000 random solutions
x ∈ X(A, b), and for each of them it evaluates y = f(x) and plots y. Figure 1 depicts
the plot which vaguely resembles a fingerprint. It demonstrates that all the points
plotted belong to [−1, 1]2, the unit “cube” (rather, square) in R2.

−1 −0.5 0 0.5 1
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0

0.2

0.4

0.6

0.8

1

Figure 1: Plot of f(X ′) for a random X ′ ⊂ X(A, b) with card(X ′)=100,000.

Second, we used the following procedure to construct 100,000 random points in
[−1, 1]2, and for each of them to compute x = f−1(y) using the above-described file
absvaleqn and to plot x:
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for i=1:100000

y=2*rand(n,1)-1;

x=absvaleqn(Ac,-diag(y)*Delta,bc+diag(y)*delta);

plot(x(1),x(2));

end

The result is shown in Figure 2. The graph is remarkably sharp and dense, in particular
in the center of it. Statistical modelling of solution sets was also performed, in another
context, by Shary [12].

−150 −100 −50 0 50 100
−100

−50

0

50

100

150

200

250

Figure 2: Plot of f−1(Y ′) for a random Y ′ ⊂ [−1, 1]2 with card(Y ′)=100,000.

And third, we plotted in Figure 3 the solution set X(A, b) using very nice special-
ized software by Irene A. Sharaya [10] whose theoretical basis is described in [11]. It
shows that the graph in Figure 2 truly reflects, up to the scale, the actual shape of the
solution set X(A, b). The eight points and emphasized intersections with coordinate
axes were added by the software automatically.

5 Nonexistence of a homeomorphism

Finally we shall show that the assumption of δ > 0 in Theorem 2.2 cannot be dropped.
To this end, consider the following example from Neumaier’s book [4] (a “butterfly”).

(
[ 2, 4] [−1, 1]
[−1, 1] [ 2, 4]

)
x =

(
[−3, 3]

[0, 0]

)
(8)

Theorem 5.1. There exists no homeomorphism between the solution set X(A, b) of
(8) and the unit cube [−1, 1]2.

Proof: Assume to the contrary that such a homeomorphism g : X(A, b) → [−1, 1]2

exists. From Fig. 4 we can see that the three points (−1, 0), (0, 0) and (1, 0) belong
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Figure 3: Plot of X(A, b) using specialized software.

to X(A, b). Let y1 = g(−1, 0) and y2 = g(1, 0), and choose a point y3 ∈ [−1, 1]2 such
that g(0, 0) belongs neither to the segment connecting y1 with y3, nor to the segment
connecting y3 with y2. Define a continuous mapping ϕ : [0, 1] → [−1, 1]2 by

ϕ(t) =

{
y1 + 2t(y3 − y1) if t ∈ [0, 1

2
],

y3 + (2t− 1)(y2 − y3) if t ∈ [ 1
2
, 1]

.

Then by convexity of [−1, 1]2 we have ϕ(t) ∈ [−1, 1]2 for each t ∈ [0, 1] and by the
choice of y3 we have that ϕ(t) 6= g(0, 0) for each t ∈ [0, 1]. Now the real-valued function
of one real variable

ψ(t) = (g−1(ϕ(t)))1, t ∈ [0, 1]

satisfies
ψ(0) = (g−1(y1))1 = (−1, 0)1 = −1

and
ψ(1) = (g−1(y2))1 = (1, 0)1 = 1,

hence by the intermediate value theorem there exists a t∗ ∈ [0, 1] such that

ψ(t∗) = (g−1(ϕ(t∗)))1 = 0.

Hence the first coordinate of the point g−1(ϕ(t∗)) ∈ X(A, b) is zero, and from Fig.
4 we can see that there is exactly one such point, namely (0, 0) ∈ X(A, b). Thus
g−1(ϕ(t∗)) = (0, 0) and consequently

ϕ(t∗) = g(0, 0)

which runs contrary to the definition of the mapping ϕ which was constructed so as
to ϕ(t) 6= g(0, 0) for each t ∈ [0, 1]. This contradiction shows that a homeomorphism
g : X(A, b) → [−1, 1]2 does not exist.
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Figure 4: Plot of X(A, b) for (8).

6 Conclusion

We have constructed an explicit homeomorphism of the solution set (sometimes called
the “united solution set”) onto the unit cube. There exist also other types of solution
sets, as e.g. the tolerance solution set, the control solution set, or Shary’s AE-solution
sets. The question whether some of them possess the aforementioned property remains
open.
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