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Abstract

A new formulation and proof is given for the Hansen-Bliek-Rohn descrip-
tion of the interval hull of the solution set of a system of interval linear
equations with unit midpoint. As a consequence we obtain an explicit
formula for an enclosure of the solution set of a system of overdetermined
interval linear equations.
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1 Introduction

For a system of interval linear equations Ax = b, where A is an n× n interval matrix
and b is an interval n-vector, the interval hull is defined as

x(A, b) =
⋂

X(A,b)⊆[y,y]

[y, y],

where
X(A, b) = {x | Ax = b for some A ∈ A, b ∈ b }, (1)

i.e., as the narrowest interval vector containing the solution set X(A, b). Computing
the interval hull is NP-hard [12], yet it was shown by Hansen [4], Bliek [2] and Rohn [8]
that the hull can be expressed by relatively simple closed-form formulae when the
system matrix has unit midpoint, i.e., is of the form A = [I−∆, I+∆], where I is the
unit matrix. However, the proof of this result is by no means straightforward. The
formulae not using interval arithmetic were proved in [8], [10], and those formulated
in terms of interval arithmetic by Ning and Kearfott [7] (using the result from [8]) and
by Neumaier [6].

In this paper we present another proof of the optimality result, based on a new
description of the interval hull (Theorem 2.1). This description is expressed in terms
of vectors rather than of entries like in [8], and as a direct consequence of the new

∗Submitted: April 25, 2016; Revised: February 3, 2017; Accepted: February 12, 2017.
†This work was supported with institutional support RVO:67985807.

1

rohn@cs.cas.cz


2 J. Rohn, Explicit Enclosure

formulation we obtain a formula for an explicit enclosure of the solution set of an
overdetermined system of interval linear equations (Theorem 5.1).

Notation used: diag(M) denotes the diagonal of a matrix M , Mk• is the kth row
of M , Tz is the diagonal matrix with diagonal vector z, a ◦ b = (aibi) stands for the
Hadamard (entrywise) product of vectors a = (ai), b = (bi) and a/b = (ai/bi) for
their Hadamard division, minimum/maximum of a finite number of vectors is taken
entrywise, I is the identity matrix, ek is the kth column of I, and e is the vector of all
ones.

2 Interval Hull

We shall later make use of the following general characterization of the interval hull.
An interval matrix A is called regular if each A ∈ A is nonsingular.

Theorem 2.1. Let A = [Ac −∆, Ac + ∆] be regular. Then for each z ∈ {−1, 1}n the
matrix equation

QAc − |Q|∆Tz = I

has a unique solution Qz and for each right-hand side b = [bc − δ, bc + δ] there holds

x(A, b) =
[

min
z∈{−1,1}n

(Qzbc − |Qz|δ), max
z∈{−1,1}n

(Qzbc + |Qz|δ)
]
. (2)

Proof: The first part of the theorem is the assertion of [11, Thm. 1], while the
second one follows from [9, Thm. 2] if we take Z = {−1, 1}n there.

3 Matrices Qz

In this section we show that the matrices Qz can be expressed explicitly in the case of
an interval matrix of the form A = [I−∆, I+∆]. The result, as well as the subsequent
ones, is formulated in terms of the matrix

M = (I −∆)−1.

Notice that

M∆ = M − I. (3)

In Theorem 3.1 we shall assume that M ≥ I. This is equivalent to regularity of
[I −∆, I + ∆], see [5]. Define

νk = 1
2Mkk−1

(k = 1, . . . , n);

since Mkk ≥ 1 for each k by assumption, we have 2Mkk − 1 ≥ 1, hence all the νk’s are
well defined and are positive. Next, define µ(z) by

µk(z) =

{
1 if zk = 1,
νk if zk = −1

(k = 1, . . . , n). (4)

Vector µ(z) is again positive.
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Theorem 3.1. Let M ≥ I. Then for each z ∈ {−1, 1}n the unique solution Qz of the
matrix equation

Q− |Q|∆Tz = I (5)

is given by
Qz = Tµ(z)(M − I)Tz + I (6)

or, alternatively, rowwise by

(Qz)k• =

{
Mk•Tz if zk = 1,
νk(Mk1, . . . ,−Mkk, . . . ,Mkn)Tz if zk = −1

(k = 1, . . . , n). (7)

Proof: For a given z ∈ {−1, 1}n define a matrix Q rowwise by

Qk• =

{
Mk•Tz if zk = 1,
νk(Mk1, . . . ,−Mkk, . . . ,Mkn)Tz if zk = −1

(k = 1, . . . , n).

Then

|Q|k• =

{
Mk• if zk = 1,
νkMk• if zk = −1

(k = 1, . . . , n). (8)

We shall prove that Q solves (5). Let k ∈ {1, . . . , n}. If zk = 1, then

(|Q|∆Tz + I)k• = Mk•∆Tz + eTk = eTkM∆Tz + eTk = eTk (M − I)Tz + eTk

= eTkMTz − eTk + eTk = Mk•Tz = Qk•

and if zk = −1, then

(|Q|∆Tz + I)k• = νkMk•∆Tz + eTk = νke
T
kM∆Tz + eTk = νke

T
k (M − I)Tz + eTk

= νke
T
kMTz − νkeTk Tz + eTk = νke

T
kMTz + (νk + 1)eTk

= νke
T
kMTz + 2νkMkke

T
k = νke

T
kMTz − νk(2Mkke

T
k )Tz

= νk(eTkM − 2Mkke
T
k )Tz = νk(Mk1, . . . ,−Mkk, . . . ,Mkn)Tz

= Qk•,

so that in both cases the kth equation of (5) is satisfied, which proves that Q solves (5).
In view of Theorem 2.1, under the regularity assumption the equation (5) possesses a
unique solution Qz, hence Q = Qz, so Qz is given by (7).

Now, from (8) and (4) we can see that |Qz|k• = µk(z)Mk• for each k which can
be written as

|Qz| = Tµ(z)M.

Then, from the fact that Qz solves (5), it follows that

Qz = |Qz|∆Tz + I = Tµ(z)M∆Tz + I = Tµ(z)(M − I)Tz + I

(see (3)), which is (6).

4 HBR Optimality Result

As is well known, arithmetic operations with one-dimensional intervals a = [a, a],
b = [b, b] are defined by the general rule

a♦b = { a♦b | a ∈ a, b ∈ b },
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where ♦ ∈ {+,−, ∗, ·· }. We shall later use only division of intervals for which a
simple continuity argument shows that

[a, a]

[b, b]
= [min{a/b, a/b, a/b, a/b},max{a/b, a/b, a/b, a/b}] (9)

holds, under assumption that 0 /∈ [b, b].
The Hansen-Bliek-Rohn (abbreviated as HBR) optimality result gives an explicit

formula for the interval hull of an interval linear system of the form

Ix = b,

where I = 〈I,∆〉 = [I −∆, I + ∆].

Theorem 4.1. Let M := (I −∆)−1 ≥ I. Then we have

x(〈I,∆〉, 〈bc, δ〉) =
〈x∗, x∗ − |x∗|〉
〈d, d− e〉 , (10)

where

d = diag(M),

x∗ = d ◦ bc,
x∗ = M(|bc|+ δ).

Comment. In (10) we use the Hadamard (entrywise) division of interval vectors
in their midpoint-radius representation, i.e., 〈a, b〉 = [a − b, a + b]. To be perfectly
clear, (10) means that

x(I, b) =

(
〈x∗, x∗ − |x∗|〉i
〈d, d− e〉i

)n
i=1

.

Evidently, the shortened version (10) is less cumbersome.
Proof: Denote [x, x] = x(I, b). Let k ∈ {1, . . . , n}. We shall first derive a formula

for xk. From (2), we have

xk = max
z∈{−1,1}n

(Qzbc + |Qz|δ)k = max
z∈{−1,1}n

((Qz)k•bc + |Qz|k•δ),

so, according to (7), for each z ∈ {−1, 1}n we must consider two cases: zk = 1 and
zk = −1.

If zk = 1, then by Theorem 3.1

(Qz)k•bc + |Qz|k•δ = Mk•Tzbc +Mk•δ

=
∑
j 6=k

Mkjzj(bc)j +Mkk(bc)k +Mk•δ

≤
∑
j 6=k

Mkj |(bc)j |+Mkk(bc)k +Mk•δ.

Introducing the vector z(k) ∈ {−1, 1}n by

z(k)j =


1 if j = k,
1 if j 6= k and (bc)j ≥ 0,
−1 if j 6= k and (bc)j < 0

(j = 1, . . . , n),
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we can write∑
j 6=k

Mkj |(bc)j |+Mkk(bc)k +Mk•δ = Mk•Tz(k)bc +Mk•δ = (Qz(k))k•bc + |Qz(k)|k•δ.

Hence, for each z ∈ {−1, 1}n with zk = 1 we have

(Qz)k•bc + |Qz|k•δ ≤ (Qz(k))k•bc + |Qz(k)|k•δ,

and the upper bound is obviously attained.
If zk = −1, then, again by Theorem 3.1,

(Qz)k•bc + |Qz|k•δ = νk(Mk1, . . . ,−Mkk, . . . ,Mkn)Tzbc + νkMk•δ

= νk
∑
j 6=k

Mkjzj(bc)j + νkMkk(bc)k + νkMk•δ

≤ νk
∑
j 6=k

Mkj |(bc)j |+ νkMkk(bc)k + νkMk•δ

= νk(Mk1, . . . ,−Mkk, . . . ,Mkn)Tz(k)bc + νkMk•δ

= (Qz(k))k•bc + |Qz(k)|k•δ

where we have employed the vector z(k) given by

z(k)j =


−1 if j = k,

1 if j 6= k and (bc)j ≥ 0,
−1 if j 6= k and (bc)j < 0

(j = 1, . . . , n).

Hence, for each z ∈ {−1, 1}n with zk = −1 we have

(Qz)k•bc + |Qz|k•δ ≤ (Qz(k))k•bc + |Qz(k)|k•δ,

and the upper bound is again obviously attained. In this way we have proved the
formula

xk = max{Qz(k))k•bc + |Qz(k)|k•δ, (Qz(k))k•bc + |Qz(k)|k•δ}.

Now,

(Qz(k))k•bc + |Qz(k)|k•δ =
∑
j 6=k

Mkj |(bc)j |+Mkk(bc)k +Mk•δ

= Mk•(|bc|+ δ) +Mkk((bc)k − |bc|k)

= (x∗ + x∗ − |x∗|)k
= x̃k,

where we have denoted x̃ = x∗ + x∗ − |x∗|, and similarly

(Qz(k))k•bc + |Qz(k)|k•δ = νk
∑
j 6=k

Mkj |(bc)j |+ νkMkk(bc)k + νkMk•δ

= νk(Mk•(|bc|+ δ) +Mkk((bc)k − |bc|k))

= νk(x∗ + x∗ − |x∗|)k
= νkx̃k
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which together gives
xk = max{x̃k, νkx̃k}.

Since
νkx̃k = x̃k/(2Mkk − 1),

we finally obtain
x = max{x̃, x̃/(2d− e)},

where we have used the Hadamard (entrywise) division of vectors.
To prove the formula for x, consider the system Ix = −b, where I = [I−∆, I+∆]

as before and −b = {−b | b ∈ b } = [−bc− δ,−bc + δ]. Then X(I,−b) = −X(I, b), so
x(I,−b) = [−x,−x]. Now we can apply the previously derived formula for the upper
bound of the interval hull:

−x = max{−d ◦ bc +M(|bc|+ δ)− |d ◦ bc|,
(−d ◦ bc +M(|bc|+ δ)− |d ◦ bc|)/(2d− e)},

hence

x = min{d ◦ bc −M(|bc|+ δ) + |d ◦ bc|, (d ◦ bc −M(|bc|+ δ) + |d ◦ bc|)/(2d− e)}
= min{x∗ − x∗ + |x∗|, (x∗ − x∗ + |x∗|)/(2d− e)}
= min{x

˜
, x

˜
/(2d− e)},

where x
˜

= x∗ − x∗ + |x∗|. This proves that

x(I, b) = [min{x
˜
, x

˜
/(2d− e)}, max{x̃, x̃/(2d− e)}]. (11)

Because x
˜
≤ x̃ and ν > 0, we can write (11) as

x(I, b) = [min{x
˜
/e, x

˜
/(2d−e), x̃/e, x̃/(2d−e)}, max{x

˜
/e, x

˜
/(2d−e), x̃/e, x̃/(2d−e)}],

which is the Hadamard division performed in interval arithmetic (see (9)):

x(I, b) =
[x
˜
, x̃]

[e, 2d− e] . (12)

Since
[x
˜
, x̃] = [x∗ − (x∗ − |x∗|), x∗ + (x∗ − |x∗|)] = 〈x∗, x∗ − |x∗|〉

and
[e, 2d− e] = 〈d, d− e〉,

(12) implies (10).

5 The Overdetermined Case

Now we shall turn to the general case of an interval linear system Ax = b with an
m × n interval matrix A = 〈Ac,∆〉 and an interval m-vector b = 〈bc, δ〉. We shall
assume below that Ac has full column rank, which already implies that m ≥ n, i.e.,
that the system is overdetermined. In this case we are no longer able to describe
the interval hull by simple formulae (the problem is NP-hard, see [3, Thm. 2.38]);
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instead, we construct an enclosure (i.e., an interval vector containing the solution set)
computable in polynomial time. As it will be seen in the following theorem, all that
is needed is evaluation of one pseudoinverse, one inverse and several matrix-vector
multiplications. In the proof, we shall essentially use the Oettli-Prager description [3,
Thm. 2.9] of the solution set (1) by

X(〈Ac,∆〉, 〈bc, δ〉) = {x | |Acx− bc| ≤ ∆|x|+ δ }.

In the description below we shall employ the pseudoinverse of the midpoint matrix. As
is well known, for each matrix A ∈ Rm×n there exists exactly one matrix A† ∈ Rn×m
satisfying

AA†A = A,

A†AA† = A†,

(A†A)T = A†A,

(AA†)T = AA†.

This matrix is called the pseudoinverse (or Moore-Penrose inverse) of A. If A has full
column rank, then A† is given explicitly by A† = (ATA)−1AT , so that A†A = I in
this case. If A is square nonsingular, then A† = A−1.

Theorem 5.1. Let Ac have full column rank and let M := (I − |A†c|∆)−1 ≥ I. Then
we have

X(〈Ac,∆〉, 〈bc, δ〉) ⊆
〈x∗, x∗ − |x∗|〉
〈d, d− e〉 , (13)

where

d = diag(M), (14)

x∗ = d ◦ (A†cbc), (15)

x∗ = M(|A†cbc|+ |A†c|δ). (16)

Proof: BecauseAc has full column rank, A†cAc = I. Thus, if x ∈X(〈Ac,∆〉, 〈bc, δ〉),
the Oettli-Prager theorem implies

|Acx− bc| ≤ ∆|x|+ δ

and hence also

|x−A†cbc| = |A†c(Acx− bc)| ≤ |A†c| · |Acx− bc| ≤ |A†c|∆|x|+ |A†c|δ

which, again by the Oettli-Prager theorem, means that

x ∈X(〈I, |A†c|∆〉, 〈A†cbc, |A†c|δ〉).

In this way we have proved that

X(〈Ac,∆〉, 〈bc, δ〉) ⊆X(〈I, |A†c|∆〉, 〈A†cbc, |A†c|δ〉).

Now, the right-hand side solution set is by definition contained in its interval hull:

X(〈I, |A†c|∆〉, 〈A†cbc, |A†c|δ〉) ⊆ x(〈I, |A†c|∆〉, 〈A†cbc, |A†c|δ〉),
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which by Theorem 4.1 implies

X(〈Ac,∆〉, 〈bc, δ〉) ⊆ x(〈I, |A†c|∆〉, 〈A†cbc, |A†c|δ〉) =
〈x∗, x∗ − |x∗|〉
〈d, d− e〉 ,

where in the formulae for M , d, x∗ and x∗ in Theorem 4.1 the values of ∆, bc and δ
were replaced by |A†c|∆, A†cbc and |A†c|δ, respectively, which gives (14)-(16).

The enclosure (13) can be naturally also applied to the square case simply by
replacing A†c by A−1

c .

6 Example

Consider the example by Bentbib [1]

Ax = b,

where

A =

 [0.1, 0.3] [0.9, 1.1]
[8.9, 9.1] [0.4, 0.6]
[0.9, 1.1] [6.9, 7.1]

 , b =

 [0.8, 1.2]
[−0.2, 0.2]
[1.8, 2.2]

 .

When we attempt to visualize the solution set with the help of the file EqnWeak2D.m

by Sharaya [13], we get the message

>> EqnWeak2D(Ac-Delta,Ac+Delta,bc-delta,bc+delta)

Solution set is empty (it does not have boundary intervals)

which shows that no solution exists. If we, however, replace the right-hand side b by

b′ =

 [0.8, 1.2]
[0.3, 0.7]
[6.8, 7.2]

 ,

then the same file EqnWeak2D.m depicts the solution set of

Ax = b′ (17)

as nonempty (Fig. 1), an exponential orthant-by-orthant algorithm determines the
interval hull as (

[−0.0370, 0.0359]
[0.9522, 1.0494]

)
,

and our method (13) yields the enclosure(
[−0.0372, 0.0372]
[0.9471, 1.0548]

)
whose overestimation can be considered acceptable.

Nevertheless, these results show that overdetermined systems require additional
care when compared with square systems, where regularity of the interval matrix
already guarantees nonemptiness of the solution set.
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Figure 1: Plot of the solution set of (17).
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