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1 Introduction

Hansen [2] and Bliek [1] published in 1992 almost simultaneously a very nice closed-form
expression for the interval hull [x, x] of the solution set of a system of interval linear equations
of the form

[I −∆, I + ∆]x = [bc − δ, bc + δ]

(i.e., with n× n unit midpoint). Both their proofs were not quite rigorous; a rigorous proof
was supplied a year later in [6], and the matter was further investigated by Ning and Kearfott
[4] and by Neumaier [3].

The fact that the proof given in [6] had been tricky and quite out-of-the-tracks of the
established methods of interval analysis intrigued this author for years. Only six years
later (the proof below is dated in author’s notes as of June 25, 1999), the author found
a straightforward proof which delivers the result as a consequence of the general theory
described in [5]. The proof is published here with a twelve-years delay, but still in the hope
that it will perhaps shed some more light on the matter.

As to the assumption, we note that %(∆) < 1 is a necessary and sufficient condition for
regularity of an interval matrix of the form [I − ∆, I + ∆]. Y is the set of all ±1-vectors
in Rn, and Ty denotes the diagonal matrix with diagonal vector y.

2 The proof

Theorem 1 [6] Let %(∆) < 1. Then for each i ∈ {1, . . . , n} we have

xi = min{xi
˜

, νixi
˜
},

xi = max{x̃i, νix̃i},
where

xi
˜

= −x∗i + mii(bc + |bc|)i

x̃i = x∗i + mii(bc − |bc|)i

x∗i = (M(|bc|+ δ))i

νi =
1

2mii − 1
∈ (0, 1]

and
M = (I −∆)−1 = (mij) ≥ 0.

Proof. Let i ∈ {1, . . . , n} be fixed. According to the general theory ([5], Theorems 2.2 and
2.4) there holds

xi = max
y∈Y

(xy)i, (2.1)

where for each y ∈ Y , xy is the unique solution of the equation

x− Ty∆|x| = bc + Tyδ. (2.2)
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We shall prove that the maximum in (2.1) is attained for y = z, where z is defined by2

zj =
{

sgn(bc)j if j 6= i,
1 if j = i

(j = 1, . . . , n). (2.3)

To this end, take an arbitrary y ∈ Y . Then, as a solution to (2.2), xy satisfies

xy = Ty∆|xy|+ bc + Tyδ, (2.4)

hence
|xy|j ≤ (∆|xy|+ |bc|+ δ)j = (∆|xy|+ Tzbc + δ)j (2.5)

for j 6= i, and
(xy)i ≤ (∆|xy|+ bc + δ)i = (∆|xy|+ Tzbc + δ)i, (2.6)

which together gives
|xy|+ ((xy)i − |xy|i)ei ≤ ∆|xy|+ Tzbc + δ (2.7)

and thus also
(I −∆)|xy| ≤ (|xy|i − (xy)i)ei + Tzbc + δ. (2.8)

Premultiplying this inequality by the nonnegative matrix M , we obtain

|xy| ≤ (|xy|i − (xy)i)Mei + M(Tzbc + δ) (2.9)

and in particular
|xy|i ≤ (|xy|i − (xy)i)mii + x̃i (2.10)

since

(M(Tzbc + δ))i = (M(|bc|+ ((bc)i − |bc|i)ei + δ))i = x∗i + ((bc)i − |bc|i)mii = x̃i.

Now, if (xy)i ≥ 0, then from (2.10) we have (xy)i ≤ x̃i, and if (xy)i < 0, then (2.10) yields
(2mii − 1)(xy)i ≤ x̃i and thus (xy)i ≤ νix̃i (since 2mii − 1 ≥ 1 in view of M =

∑∞
0 ∆j ≥ I),

so that
(xy)i ≤ max{x̃i, νix̃i}. (2.11)

On the other hand, if we start in (2.4) with y = z, then it follows from the equivalent
equation

Tzxz = ∆|xz|+ Tzbc + δ (2.12)

and from the definition of z (in particular, (Tzbc)j ≥ 0 and hence (Tzxz)j = |xz|j for j 6= i)
that the inequalities (2.5) and (2.6), and thereby also (2.7) through (2.10), hold as equations,
so that at the end we obtain

|xz|i = (|xz|i − (xz)i)mii + x̃i.

Considering separately the cases (xz)i ≥ 0 and (xz)i < 0 as before, we arrive at

(xz)i = max{x̃i, νix̃i}. (2.13)

Hence from (2.1), (2.11) and (2.13) we finally obtain

xi = max
y∈Y

(xy)i = (xz)i = max{x̃i, νix̃i},

which gives the formula for xi. The proof for xi is analogous. 2

2sgn(β) = 1 for β ≥ 0, sgn(β) = −1 for β < 0.
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On the way, we have also proved the following explicit result which may be useful in some
related considerations.

Corollary 2. Let %(∆) < 1. Then for each i ∈ {1, . . . , n} we have

xi = (xz)i,

where xz is the unique solution of the equation (2.12) and z is given by (2.3).

The result further simplifies under the assumption of nonnegativity of bc.

Corollary 3. If %(∆) < 1 and bc ≥ 0, then

x = xe,

where xe is the unique solution of the equation

x = ∆|x|+ bc + δ.

Proof. If bc ≥ 0, then z = e independently of i. 2

Analogous results hold for xi.
In the formulation of Theorem 1 we preferred, as in [6], the use of real arithmetic. Neu-

maier’s result in [3] is formulated in terms of the interval arithmetic.
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