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Preface

Aim. It has been the aim of this text to present a selection of important results on
interval linear problems in a unified and concise way.

Philosophy. The philosophy behind the text is the “one-topic-one-page” approach, in
which each topic is allotted the space of one page only.

Layout. There are basically two types of problems handled in interval analysis: decision
problems (as checking whether an interval matrix is regular), and computational problems
(as computation of the inverse of a regular interval matrix). For decision problems I was
using the following page layout:

Definition. (basic notion of the page)

Problem. (problem formulation)

Necessary and sufficient condition.

Complexity.

Sufficient condition. (if the problem is NP-hard)

Algorithm. (reference to Chapter 7, or to the above sufficient condition)

Comment. (if necessary)

Operation. (the way the algorithm is operating)

Special features. (explanations, connections or related results of particular interest)

References. (sources of given or related results; without names)

and for the computational problems a similar layout

Definition.

Problem.

Formula(e). (formula(e) used in the algorithm)

Complexity.

Algorithm.

Comment.

Operation.

Special features.

References.
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6 Preface

Sometimes some of the headings are missing. Occasionally, when necessary, I also added
another headings, as Intro, Fact, Idea, Formulae for enclosures, Apology1, etc.

Algorithms. It has been my second goal to present not-a-priori-exponential algorithms
for solving NP-hard problems. They are those forming the branch starting with signac-
cord in the scheme on p. 53.

Algorithm form. All the algorithms are gathered in Chapter 7. They are described in
the form of MATLAB-like functions, but with formulae written in the usual mathematical
way. In particular, the output variable flag always gives a verbal description of the output.

Hyperlinks. The source text contains hyperlinks that make it easy to flip through it
simply by clicking on links colored in magenta, or, in the Contents, in blue. In particular,
each item in the bibliography is appended with numbers (in magenta) of the pages where
it is referenced from. (This feature also allows you to verify that all the bibliographical
items have been referenced.) My own papers listed can be downloaded directly by clicking
on the respective URLs in the bibliography.2

Prague, Easter 2005 Jiri Rohn
(rohn@cs.cas.cz)

1On p. 40.
2Unfortunately, this works only in the dvi file, not in the pdf file.



Chapter 1

Notations

Subject. Notations used are introduced and summarized in this chapter.
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8 1 Notations

1.1 Basic notations

1.1.1 Linear algebraic notations

Notation for matrices. The ith row of a matrix A is denoted by Ai•, the jth column
by A•j. For two matrices A,B of the same size, inequalities like A ≤ B or A < B are
understood componentwise. A is called nonnegative if 0 ≤ A and symmetric if AT = A; AT

is the transpose of A. A ◦B denotes the Hadamard (entrywise) product of A,B ∈ Rm×n,
i.e., (A ◦ B)ij = AijBij for each i, j. The absolute value of a matrix A = (aij) is defined
by |A| = (|aij|). Maximum (or minimum) of two matrices A, B is taken componentwise,
i.e., (max{A,B})ij = max{Aij, Bij} for each i, j.

Properties. The following properties are valid whenever the respective operations and
inequalities are defined: (i) A ≤ B and 0 ≤ C imply AC ≤ BC, (ii) A ≤ |A|, (iii) |A| ≤ B
if and only if −B ≤ A ≤ B, (iv) |A + B| ≤ |A| + |B|, (v) if A ◦ B ≥ 0, then |A + B| =
|A| + |B|, (vi) if |A − B| < |B|, then A ◦ B > 0, (vii) ||A| − |B|| ≤ |A − B|, (viii)
|AB| ≤ |A||B|.
Notation for vectors. The same notations and results also apply to vectors which are
always considered one-column matrices. Hence, for a = (ai) and b = (bi), aT b =

∑
i aibi

is the scalar product whereas abT is the matrix (aibj).

Notation. I denotes the unit matrix, ej is the jth column of I, e = (1, . . . , 1)T is the
vector of all ones and E = eeT ∈ Rm×n is the matrix of all ones (in these cases we do not
designate explicitly the dimension which can always be inferred from the context).

1.1.2 Specific notations

Notation specific for this text. Throughout the text, important role is played by the
set Ym of all ±1 vectors in Rm, i.e., Ym = {y ∈ Rm ; |y| = e}. Obviously, the cardinality
of Ym is 2m. For each x ∈ Rm we define its sign vector sgn x by

(sgn x)i =

{
1 if xi ≥ 0,

−1 if xi < 0
(i = 1, . . . ,m),

so that sgn x ∈ Ym. For a given vector y ∈ Rm we denote

Ty =




y1 0 . . . 0
0 y2 . . . 0
...

...
. . .

...
0 0 . . . ym


 . (1.1)

With a few exceptions we use the notation Ty for vectors y ∈ Ym only, in which case we
have T−y = −Ty, T−1

y = Ty and |Ty| = I. For each x ∈ Rm we can write |x| = Tzx, where
z = sgn x; in the proofs1 this trick is often used to remove the absolute value of a vector.
Notice that Tzx = (zixi)

m
i=1 = z ◦ x.

All notations are summed up on pp. 9-10.

1Omitted here.



1.2 Summary: Linear algebraic notations 9

1.2 Summary: Linear algebraic notations

A matrix
Ai• the ith row of A
A•j the jth column of A
A−1 inverse matrix
A+ the Moore-Penrose inverse of A
AT transpose of A
‖A‖∞,1 = max‖x‖∞=1 ‖Ax‖1

A ≤ B Aij ≤ Bij for each i, j
A < B Aij < Bij for each i, j
A ≥ B ⇔ B ≤ A
A > B ⇔ B < A
A ◦B = (aijbij) for A = (aij), B = (bij) (Hadamard product)
a column vector
aT b =

∑
i aibi (scalar product)

abT outer product ((abT )ij = aibj for each i, j)
Conv X the convex hull of X
det A determinant of A
E = eeT ∈ Rm×n (the matrix of all ones)
e = (1, 1, . . . , 1)T

ej the jth column of the unit matrix I
I unit (or identity) matrix
λi(A) the ith eigenvalue of a symmetric A (λ1(A) ≥ . . . ≥ λn(A))
max{A,B} componentwise maximum of matrices (vectors)
min{A,B} componentwise minimum of matrices (vectors)
R the set of real numbers
Rm×n the set of m× n real matrices
Rn real vector space
%(A) spectral radius of A



10 1 Notations

1.3 Summary: Specific notations

Notations marked in red are important and occur frequently.

A interval matrix
|A| absolute value of a matrix (|A| = (|aij|) for A = (aij))
A lower bound of an interval matrix A = [A,A]
A upper bound of an interval matrix A = [A, A]
Ac midpoint matrix of an interval matrix A = [Ac −∆, Ac + ∆]

As = [(A + AT )/2, (A + A
T
)/2] for A = [A, A] (symmetrization)

Ayz = Ac − Ty∆Tz

A−yz = A−y,z
a
0

= 0 for a = 0, = ∞ for a > 0 (case a < 0 does not occur)
b interval vector

b lower bound of an interval vector b = [b, b]

b upper bound of an interval vector b = [b, b]
bc midpoint vector of an interval vector b = [bc − δ, bc + δ]
by = bc + Ty∆
δ radius vector of an interval vector b = [bc − δ, bc + δ]
∆ radius matrix of an interval matrix A = [Ac −∆, Ac + ∆]
f(A, b, c) optimal value of a linear programming problem
f(A,b, c) lower bound of the range of the optimal value of an

interval linear programming problem

f(A,b, c) upper bound of the range of the optimal value of an
interval linear programming problem

%0(A) real spectral radius of A (maximum of moduli of real eigenvalues)
= 0 if no real eigenvalue exists

Rn
z = {x ∈ Rn ; Tzx ≥ 0} (z-orthant, z ∈ Yn)

sgn x sign vector of a vector x ((sgn x)i = 1 if xi ≥ 0, (sgn x)i = −1 otherwise)
Ty the diagonal matrix with diagonal vector y
X the solution set of Ax = b
|x| absolute value of a vector (|x| = (|xi|) for x = (xi))
[x, x] the interval hull of the solution set X
[x, x] enclosure of X (in particular, that by Hansen-Bliek-Rohn)
Ym the set of all ±1-vectors in Rm



Chapter 2

Auxiliary results

Recommendation. Please, read the Preface (pp. 5-6) first.

Subject. Three auxiliary results (of noninterval character) are presented in this chapter.
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12 2 Auxiliary results

2.1 The set Yn

Definition. Yn is the set of all ±1-vectors in Rn (there are 2n of them).

Problem. Generate Yn vector by vector so that each two successive vectors differ in
exactly one entry.

Algorithm. See p. 54.

Comment. In the algorithm description, y is the generated vector and z is an auxiliary
(0, 1)-vector used for determining the index k for which yk should be changed to −yk.

Operation. For each n ≥ 1 the algorithm at the output yields the set Y = Yn.

Special features. This algorithm is employed as a subroutine in exhaustive algorithms
that require to perform some operation for all y ∈ Yn (see the scheme on p. 53). The set
Yn itself is not constructed, the operation is applied to successively generated vectors.

References. [108].
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2.2 The norm ‖A‖∞,1

Definition. For A ∈ Rm×n we define (see e.g. [35])

‖A‖∞,1 = max
‖x‖∞=1

‖Ax‖1.

Problem. Compute ‖A‖∞,1 for a given A.

Formula. For each A ∈ Rm×n we have

‖A‖∞,1 = max
y∈Yn

‖Ay‖1.

Complexity. Computing ‖A‖∞,1 is NP-hard. Even more, checking whether ‖A‖∞,1 ≥ 1
is NP-complete.

Algorithm. See p. 55.

Comment. This algorithm uses implicitly the algorithm ynset for generating the set
Yn (p. 54). This simplifies computation of the new Ay′ from the old Ay. Also, since
‖A(−y)‖1 = ‖Ay‖1, only y’s with yn = 1 are considered.

Operation. The algorithm computes ‖A‖∞,1 in a number of steps exponential in n.

Special features. When studying complexity of interval linear problems, we often en-
counter this norm (see the survey [105]). Since its computation is NP-hard, the norm
forms one of two main tools for establishing NP-hardness of interval linear problems (the
second such a tool is a related problem whether −e ≤ Ax ≤ e, ‖x‖1 ≥ 1 has a solution,
see [108]).

References. [107], [105], [108], [35], [25].



14 2 Auxiliary results

2.3 The equation Ax + B|x| = b and the sign accord

algorithm

Problem. Given A,B ∈ Rn×n and b ∈ Rn, find a solution to the nonlinear equation

Ax + B|x| = b. (2.1)

Idea. If we knew the sign vector z = sgn x of the solution x of (2.1), we could rewrite
(2.1) as (A+BTz)x = b and solve it for x as x = (A+BTz)

−1b. However, we know neither
x, nor z; but we do know that they should satisfy Tzx = |x| ≥ 0, i.e., zjxj ≥ 0 for each j
(a situation we call a sign accord of z and x). In its kernel form the sign accord algorithm
computes the z’s and x’s repeatedly until a sign accord occurs. A combinatorial argument

z = sgn (A−1b);
x = (A + BTz)

−1b;
while zjxj < 0 for some j

k = min{j ; zjxj < 0};
zk = −zk;
x = (A + BTz)

−1b;
end

Figure 2.1: The kernel of the sign accord algorithm (p. 56).

is used to prove that in case of regularity of [A− |B|, A + |B| ], a sign accord is achieved
within a prespecified number of steps, so that crossing this number indicates singularity
of [A− |B|, A + |B| ] (see p. 17 for regularity and singularity).

Complexity. The problem of checking whether (2.1) has a solution is NP-complete.

Algorithm. See p. 56.

Comment. The matrix C in the algorithm description is used for updating x according
to the Sherman-Morrison formula.

Operation. For each A,B ∈ Rn×n and each b ∈ Rn, the sign accord algorithm (p. 56) in
a finite number of steps either finds a solution of the equation (2.1), or states singularity
of the interval matrix [A − |B|, A + |B| ] (and, in certain cases, finds a singular matrix
As ∈ [A− |B|, A + |B| ]).

Comment. If [A − |B|, A + |B| ] is regular, then the algorithm finds a solution of (2.1)
which, moreover, is unique. In case of singularity the algorithm may state singularity
without having found a singular matrix, but such cases are rather rare; in most cases it
finds a singular matrix as well.

Special features. The sign accord algorithm is the fundamental building block for
construction of other algorithms presented in Chapter 7. (See the scheme on p. 53.)

References. [92].



Chapter 3

Interval matrices

Subject. In this chapter we consider various properties of square n×n interval matrices.
Rectangular interval matrices are handled only in the last Section 3.19.
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16 3 Interval matrices

3.1 Interval matrices: definition and basic notations

Definition. If A, A are two matrices in Rm×n, A ≤ A, then the set of matrices

A = [A,A] = {A ; A ≤ A ≤ A}
is called an interval matrix, and the matrices A, A are called its bounds.

Comment. Hence, if A = (aij) and A = (aij), then A is the set of all matrices A = (aij)
satisfying

aij ≤ aij ≤ aij (3.1)

for i = 1, . . . , m, j = 1, . . . , n. It is worth noting that each coefficient may attain any value
in its interval (3.1) independently of the values taken on by other coefficients. Notice that
interval matrices are typeset in boldface letters.

Notation. In many cases it is more advantageous to express the data in terms of the
center matrix

Ac = 1
2
(A + A) (3.2)

and of the radius matrix
∆ = 1

2
(A− A), (3.3)

which is always nonnegative.

Comment. From (3.2), (3.3) we easily obtain that

A = Ac −∆,

A = Ac + ∆,

so that A can be given either as [A,A], or as [Ac −∆, Ac + ∆]. In the sequel we employ
both forms and we switch freely between them according to which one is more useful in
the current context.

Matrices Ayz (important). Given an m× n interval matrix A = [Ac −∆, Ac + ∆], we
define matrices

Ayz = Ac − Ty∆Tz

for each y ∈ Ym and z ∈ Yn (Ty is given by (1.1)).

Explanation. The definition implies that

(Ayz)ij = (Ac)ij − yi∆ijzj =

{
aij if yizj = −1,
aij if yizj = 1

(i = 1, . . . , m, j = 1, . . . , n), so that Ayz ∈ A for each y ∈ Ym, z ∈ Yn.

Special features. This finite set of matrices from A (of cardinality at most 2m+n−1

because Ayz = A−y,−z for each y ∈ Ym, z ∈ Yn; the bound is attained if ∆ > 0) plays
an important role because it turns out that many problems with interval-valued data can
be characterized in terms of these matrices, thereby obtaining finite characterizations of
problems involving infinitely many sets of data.

Special cases. We write A−yz instead of A−y,z. In particular, we have A−yz = Ac+Ty∆Tz,
Aye = Ac − Ty∆, Aez = Ac −∆Tz, Aee = A and A−ee = A.
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3.2 Regularity

Definition. A square interval matrix A is called regular if each A ∈ A is nonsingular,
and it is said to be singular otherwise (i.e., if it contains a singular matrix).

Problem. Check regularity of A.

Necessary and sufficient conditions. For a square interval matrix A = [Ac−∆, Ac +
∆], the following assertions are equivalent:

(i) A is regular,

(ii) the inequality |Acx| ≤ ∆|x| has only the trivial solution,

(iii) (det Ayz)(det Ay′z′) > 0 for each1 y, z, y′, z′ ∈ Yn,
(iv) Ac is nonsingular and2 maxy,z∈Yn %0(A

−1
c Ty∆Tz) < 1,

(v) for each z ∈ Yn the equation QAc − |Q|∆Tz = I has a unique matrix solution Qz.

Complexity. Checking regularity of interval matrices is a co-NP-complete problem.

Sufficient regularity condition. An interval matrix A = [Ac−∆, Ac + ∆] is regular if

%(|A−1
c |∆) < 1 (3.4)

holds.3

Comment. The condition (3.4) can be verified in polynomial time since it is equivalent
to (I − |A−1

c |∆)−1 ≥ 0.

Sufficient singularity condition. An interval matrix A = [Ac−∆, Ac+∆] is singular if

max
j

(|A−1
c |∆)jj ≥ 1

holds.

Algorithm. See p. 57.

Comment. The algorithm is based on another principles and employs the procedure
hull (see p. 64), but at the start it checks the above two sufficient conditions.

Operation. The algorithm in a finite number of steps checks regularity or singularity
of A.

Special features. Among many properties of regular interval matrices, probably the
most important one is the unique solvability of the equation Ax + B|x| = b (p. 14) in
conjunction with the sign accord algorithm (p. 56) for finding its solution.

References. [9], [12], [92], [110], [41].

1Ayz = Ac − Ty∆Tz, see p. 10
2%0 is the real spectral radius, see p. 10.
3Interval matrices satisfying (3.4) are called strongly regular.



18 3 Interval matrices

3.3 Finding a singular matrix

Fact. By definition (p. 17), a singular interval matrix A contains a singular matrix. The
algorithm regularity (p. 57) is capable of detecting singularity of A, but it does not find
a singular matrix in A.

Problem. Find a singular matrix in a singular interval matrix A.

Idea. By the assertion (iii) on p. 17, singularity of A is equivalent to existence of
y, z, y′, z′ ∈ Yn such that

(det Ayz)(det Ay′z′) ≤ 0. (3.5)

Since the ±1-vectors (yT , zT ) can be ordered in such a way that each two successive vectors
differ in exactly one entry (p. 12), the inequality (3.5) must occur for some ±1-vectors
(yT , zT ), (y′T , z′T ) differing in just one entry.

Formulae. Let (3.5) hold for some ±1-vectors (yT , zT ), (y′T , z′T ) differing in exactly one
entry. Then we have:

(a) if y′i 6= yi for some i, then As = Ac − (Ty − 2τeie
T
i )∆Tz is a singular matrix in A,

where τ = −yi/(2(AcD)ii − 2),
(b) if z′j 6= zj for some j, then As = Ac − Ty∆(Tz − 2τeje

T
j ) is a singular matrix in A,

where τ = −zj/(2(DAc)jj − 2).

Algorithm. See p. 58.

Comment. The algorithm successively generates all the ±1-vectors (yT , zT ) using im-
plicitly the algorithm ynset (pp. 12, 54) as a subroutine. det Ay′z′ is evaluated from
det Ayz with the help of the Sherman-Morrison determinant formula which also proves
that the matrix As constructed in (a) or (b) above is singular.

Operation. The algorithm in a finite number of steps checks regularity or singularity of
A and in the latter case it also constructs a singular matrix As ∈ A.

Comment. The algorithm is heavily exponential. It is therefore recommended to check
first singularity by the algorithm regularity, and if singularity is detected, to use the
current algorithm for finding a singular matrix.

Special features. The above cases (a), (b) show that if A is singular, then it contains
a singular matrix in a certain “normal form” As = Ac − Ty∆Tz, where all entries of y, z
are ±1 with exception of one which belongs to [−1, 1].

References. [92], [96].
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3.4 Qz matrices

Fact. According to the assertion (v) on p. 17, A = [Ac − ∆, Ac + ∆] is regular if and
only if for each z ∈ Yn the equation

QAc − |Q|∆Tz = I (3.6)

has a unique matrix solution Qz.

Problem. Given a regular A, compute Qz for a given z ∈ Yn.

Formula. For each i, (Qz)i• = xT , where x is the solution of

AT
c x− Tz∆

T |x| = ei

and can be found by the sign accord algorithm (see pp. 14, 56).

Complexity. Unknown.

Algorithm. See p. 59.

Operation. The algorithm in a finite number of steps either computes a solution to (3.6),
or states singularity of A.

Comment. If A is regular, then the computed solution of (3.6) is equal to Qz. But it
may happen that the algorithm finds a solution to (3.6) even in case of singularity.

Special features. Matrices Qz are the main tool for construction of a not-a-priori-
exponential algorithm for computing the hull, see p. 64.

References. [92].
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3.5 Inverse interval matrix

Definition. For a regular A we define the inverse interval matrix as A−1 = [B,B], where

B = min{A−1 ; A ∈ A},

B = max{A−1 ; A ∈ A}
(componentwise).

Problem. Given a regular A, compute A−1.

Formulae. Let A be regular. Then for its inverse A−1 = [B,B] we have

B = min
z∈Yn

Qz = min
y,z∈Yn

A−1
yz ,

B = max
z∈Yn

Qz = max
y,z∈Yn

A−1
yz

(componentwise).

Complexity. Computing the inverse interval matrix is NP-hard.

Algorithm. See p. 60.

Operation. The algorithm in a finite number of steps either computes A−1, or states
singularity of A.

Special features. As in real numerical analysis, computation of A−1 should be avoided
whenever possible. In particular, an interval linear system Ax = b should never be solved
as x = A−1b.

References. [92], [97], [18].
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3.6 Enclosure of the inverse interval matrix

Definition. An interval matrix
[
B, B

]
satisfying A−1 ⊆ [

B,B
]

is called an enclosure of
the inverse interval matrix.

Problem. Given a regular A, compute an enclosure of its inverse.

Comment. This weakened requirement is a consequence of the NP-hardness of comput-
ing the exact interval inverse, see p. 20.

Formula. Let A = [Ac −∆, Ac + ∆] satisfy4 %(|A−1
c |∆) < 1. Then we have

A−1 ⊆ [min{B
˜

, TνB˜
}, max{B̃, TνB̃}],

where

M = (I − |A−1
c |∆)−1,

µ = (M11, . . . , Mnn)T ,

Tν = (2Tµ − I)−1,

B
˜

= −M |A−1
c |+ Tµ(A−1

c + |A−1
c |),

B̃ = M |A−1
c |+ Tµ(A−1

c − |A−1
c |).

Comment. This is the Hansen-Bliek-Rohn enclosure (p. 40) applied to interval linear
systems Ax = [ej, ej] for j = 1, . . . , n. It can be used only when %(|A−1

c |∆) < 1.

Complexity. This enclosure is computed in polynomial time.

Algorithm. Use the above formulae.

Operation. The algorithm in a finite number of steps either computes an enclosure, or
fails (due to %(|A−1

c |∆) ≥ 1).

Special features. Computing this enclosure requires inverting two real matrices only
(inverting 2Tµ − I is trivial because it is a diagonal matrix).

References. [108], [95], [34], [17].

4See p. 17.
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3.7 Inverse stability

Definition. A regular interval matrix A is called inverse stable5 if |A−1| > 0 for each
A ∈ A.

Comment. Due to the continuity of the determinant, this means that for each i, j, either
(A−1)ij < 0 for each A ∈ A, or (A−1)ij > 0 for each A ∈ A. Thus we can also say that
inverse stability is equivalent to existence of a matrix Z such that6 Z ◦ A−1 > 0 for each
A ∈ A.

Problem. Check inverse stability of a regular A.

Necessary and sufficient condition. A is inverse stable if and only if there exists a
matrix Z such that Z ◦ A−1

yz > 0 for each y, z ∈ Yn.

Complexity. Unknown.

Sufficient condition. If
[
B, B

]
is an enclosure of the inverse interval matrix (see p. 21)

and B ◦B > 0, then A is inverse stable.

Algorithm. Use the above sufficient condition.

Operation. The algorithm is polynomial-time, but it fails if %(|A−1
c |∆) ≥ 1 or B ◦B ≯ 0.

Special features. If A is inverse stable, then the coefficients of its inverse A−1 = [B, B]
are given by the explicit formulae

Bij = (A−1
−y(i),z(j))ij

Bij = (A−1
y(i)z(j))ij

(i, j = 1, . . . , n), where y(i) = sgn (A−1
c )i• and z(j) = sgn (A−1

c )•j for each i, j.

References. [92], [97].

5Meant: inverse sign stable.
6For clarity, Z may be “normalized” to satisfy |Z| = E, but it is not necessary. “◦” denotes the

Hadamard product, see p. 9.
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3.8 Inverse sign pattern

Definition. Let A be regular. If there exist (fixed) z, y ∈ Yn such that TzA
−1Ty ≥ 0

holds for each A ∈ A, then A is said to be of the inverse sign pattern (z, y).

Comment. In other words, for each i, j we have (A−1)ijziyj ≥ 0 for each A ∈ A, so that
ziyj prescribes the sign of (A−1)ij.

Problem. For given z, y ∈ Yn, check whether A is of the inverse sign pattern (z, y).

Necessary and sufficient condition. A is of the inverse sign pattern (z, y) if and
only if

TzA
−1
yz Ty ≥ 0, (3.7)

TzA
−1
−yzTy ≥ 0 (3.8)

hold.7

Complexity. The problem can be solved in polynomial time.

Algorithm. Check the above two conditions.

Operation. Checking requires inverting two real matrices only.

Special features. This is a generalization of inverse nonnegativity (p. 24). E.g. for
z = y = (1,−1, 1, . . . , (−1)n−1)T we get the “chequer-board” inverse sign pattern, etc.

References. [92], [26].

7Which implicitly asserts that the two conditions (3.7), (3.8) imply regularity of A.
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3.9 Inverse nonnegativity

Definition. A regular interval matrix A is called inverse nonnegative if A−1 ≥ 0 for each
A ∈ A.

Problem. Check whether a given A is inverse nonnegative.

Necessary and sufficient condition. A square interval matrix A = [A,A] is inverse

nonnegative if and only if A−1 ≥ 0 and A
−1 ≥ 0.8

Complexity. The problem can be solved in polynomial time.

Algorithm. Check the above two conditions.

Operation. Two inversions needed.

Special features. If A = [A, A] is inverse nonnegative, then A−1 = [A
−1

, A−1].

Comment. In a similar way we may define A to be inverse positive if A−1 > 0 for each

A ∈ A. Then A is inverse positive if and only if A−1 > 0 and A
−1

> 0.

References. [56], [90].

8Which implicitly asserts that nonnegative invertibility of A and A implies regularity of A.
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3.10 Radius of regularity

Convention. In this section (only) we use the convention 0
0

= 0, a
0

= ∞ for a > 0.

Definition. For a square interval matrix A = [Ac −∆, Ac + ∆], the number

d(A) = inf{ε ≥ 0 ; [Ac − ε∆, Ac + ε∆] is singular} (3.9)

is called the radius of regularity9 of A.

Comment. Hence, d(A) ∈ [0,∞]. If d(A) is finite, then the infimum in (3.9) is attained
as minimum.

Problem. Given A, compute d(A).

Formulae. For each square interval matrix A = [Ac −∆, Ac + ∆] we have10

d(A) = inf
x6=0

max
i

|Acx|i
(∆|x|)i

=
1

max
y,z∈Yn

%0(A−1
c Ty∆Tz)

, (3.10)

the second formula assuming nonsingularity of Ac.

Comment. In the first formula in (3.10), “x 6= 0” can be replaced by “‖x‖ = 1” in any
vector norm.

Complexity. Computing d(A) is NP-hard, even in the case11 ∆ = E.

Bounds. If Ac is nonsingular, then

1

%(|A−1
c |∆)

≤ d(A) ≤ 1

max
j

(|A−1
c |∆)jj

. (3.11)

Algorithm. Starting from the bounds (3.11) (if finite), use the method of halving the
interval in conjunction with the algorithm regularity, p. 57.

Comment. In the neighbourhood of d(A) the algorithm is likely to behave exponentially
and the computation is likely to be slow.

Special features. d(A) = 1/%(|A−1
c |∆) if Ac is nonsingular and TzA

−1
c Ty ≥ 0 holds for

some z, y ∈ Yn.

Comment. The topic was further investigated in [22], [116], [117], [115], and has found
applications in control theory.

References. [79], [80], [91], [22], [116], [117], [115], [3], [5], [16], [19], [23], [83].

9Also “radius of nonsingularity”, and even “radius of singularity”.
10From conditions (ii), (iv) on p. 17.
11The first NP-hardness result for an interval problem, see [79], [80].
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3.11 Real eigenvalues

Definition. A real number12 λ is called a real eigenvalue of A if it is a real eigenvalue of
some A ∈ A.

Problem. Check whether a given λ ∈ R is a real eigenvalue of A.

Necessary and sufficient condition. A λ ∈ R is a real eigenvalue of A = [Ac−∆, Ac+
∆] if and only if the interval matrix

[(Ac − λI)−∆, (Ac − λI) + ∆] (3.12)

is singular.

Complexity. The problem is NP-hard. (It is NP-hard even for λ = 0, see p. 17.)

Sufficient conditions. If λ ∈ R is not an eigenvalue of Ac, then13:

(a) if maxj(|(Ac − λI)−1|∆)jj ≥ 1, then λ is a real eigenvalue of A,

(b) if %(|(Ac − λI)−1|∆) < 1, then λ is not a real eigenvalue of A.

Algorithm. Check singularity of (3.12) by the algorithm regularity (p. 57).

Operation. The algorithm solves the problem in a finite number of steps.

References. [96], [92], [84].

12We consider the real eigenproblem only; complex eigenvalues seemingly cannot be handled effectively
by our methods.

13See p. 17.
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3.12 Real eigenvectors

Definition. A real vector x is called a real eigenvector of A if it is a real eigenvector of
some A ∈ A.

Problem. Check whether a given real vector x is a real eigenvector of A.

Necessary and sufficient condition. A vector 0 6= x ∈ Rn is a real eigenvector of A
if and only if it satisfies14

TzAzzxxT Tz ≤ TzxxT AT
−zzTz,

where z = sgn x.

Complexity. The problem can be solved in polynomial time.

Algorithm. Check the above condition.

Special features. While checking real eigenvalues is NP-hard (p. 26), checking real
eigenvectors is a polynomial-time problem. This is certainly a surprising and unexpected
result. For another kind of such a distinction, see p. 51.

References. [96].

14Azz = Ac − Tz∆Tz and A−zz = Ac + Tz∆Tz, see p. 10.
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3.13 Real eigenpairs

Definition. If λ ∈ R and x ∈ Rn, then the pair (λ, x) is called a real eigenpair of A if it
is a real eigenpair of some A ∈ A.

Problem. Given λ ∈ R and x ∈ Rn, check whether (λ, x) is a real eigenpair of A.

Necessary and sufficient condition. If λ ∈ R and 0 6= x ∈ Rn, then (λ, x) is a real
eigenpair of A = [Ac −∆, Ac + ∆] if and only if

|(Ac − λI)x| ≤ ∆|x| (3.13)

holds.

Complexity. Verification can be performed in polynomial time.

Algorithm. Check the above condition.

Special features. It follows15 from (3.13) that (λ, x), x 6= 0, is a real eigenpair of A if
and only if

max
xi 6=0

((TzAcTz −∆)|x|)i

|xi| ≤ λ ≤ min
xj 6=0

((TzAcTz + ∆)|x|)j

|xj|
holds, where z = sgn x. This shows the range of all real eigenvalues λ of A belonging to
the same real eigenvector x.

References. [96].

15See [96].
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3.14 Eigenvalues of symmetric matrices

Fact. A symmetric matrix A ∈ Rn×n has all eigenvalues real. They are (usually) ordered
in a nonincreasing sequence as λ1(A) ≥ . . . ≥ λn(A).

Definition. A square interval matrix A = [Ac −∆, Ac + ∆] is called symmetric if both
Ac and ∆ are symmetric (so that it may also contain nonsymmetric matrices).

Fact. If A is symmetric, then for each i ∈ {1, . . . , n} the set

{λi(A) ; A ∈ A, A symmetric}
is a compact interval. We denote this interval by [λi(A), λi(A)].

Problem. Given a symmetric A, compute the intervals [λi(A), λi(A)], i = 1, . . . , n.

Formulae for the extremal eigenvalues. Unfortunately, formulae are available only
for the extremal eigenvalues so far16: For each symmetric A = [Ac − ∆, Ac + ∆] there
holds17

λ1(A) = max
‖x‖2=1

(xT Acx + |x|T ∆|x|) = max
z∈Yn

λ1(A−zz),

λn(A) = min
‖x‖2=1

(xT Acx− |x|T ∆|x|) = min
z∈Yn

λn(Azz).

Complexity. Computing λ1(A), λn(A) is NP-hard.

Reformulation of the problem. Due to the above difficulties, we reformulate the prob-
lem as follows: given a symmetric A, compute enclosures of the intervals [λi(A), λi(A)],
i = 1, . . . , n.

Formulae for enclosures. For a symmetric A = [Ac −∆, Ac + ∆] we have18

[λi(A), λi(A)] ⊆ [λi(Ac)− %(∆), λi(Ac) + %(∆)] (i = 1, . . . , n). (3.14)

Algorithm. Use the above formulae.

Comment. It is an unpleasant feature that all the intervals in (3.14) have the same
radius. But nothing better seems to be available.

Operation. Computing the enclosures requires computation of all the eigenvalues of Ac

and of the spectral radius of ∆.

Special features. In particular, for each eigenvalue λi(A) of each symmetric A ∈ A
there holds

λn(Ac)− %(∆) ≤ λi(A) ≤ λ1(Ac) + %(∆).

These bounds are useful for solving problems formulated in terms of extremal eigenvalues
(as e.g. positive (semi)definiteness or Hurwitz stability).

References. [103], [106], [99], [28].

16As far as known to me.
17Azz = Ac − Tz∆Tz, see p. 10.
18Consequence of the Wielandt-Hoffman theorem, see [28].
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3.15 Positive semidefiniteness

Definition. A symmetric interval matrix (see p. 29) is said to be positive semidefinite if
xT Ax ≥ 0 holds for each A ∈ A and each x.

Problem. Given a symmetric A, check it for positive semidefiniteness.

Necessary and sufficient conditions. For a symmetric interval matrix A = [Ac −
∆, Ac + ∆], the following assertions are equivalent:

(i) A is positive semidefinite,

(ii) xT Acx− |x|T ∆|x| ≥ 0 for each x,

(iii) each Azz, z ∈ Yn, is positive semidefinite.19

Complexity. Checking positive semidefiniteness is NP-hard.

Sufficient condition. If
%(∆) ≤ λn(Ac),

then A = [Ac −∆, Ac + ∆] is positive semidefinite.

Algorithm. Check the above sufficient condition.

Comment. Employing the necessary and sufficient condition (iii) results in an exponen-
tial number of operations and can be hardly recommended.

References. [101], [54].

19Each matrix Azz = Ac − Tz∆Tz, z ∈ Yn, is symmetric.
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3.16 Positive definiteness

Definition. A symmetric interval matrix (see p. 29) is said to be positive definite if
xT Ax > 0 holds for each A ∈ A and each x 6= 0.

Problem. Given a symmetric A, check it for positive definiteness.

Necessary and sufficient conditions. For a symmetric interval matrix A = [Ac −
∆, Ac + ∆], the following assertions are equivalent:

(i) A is positive definite,

(ii) xT Acx− |x|T ∆|x| > 0 for each x 6= 0,

(iii) each Azz, z ∈ Yn, is positive definite,20

(iv) A is regular (see p. 17) and Ac is positive definite.

Complexity. Checking positive definiteness is NP-hard.

Sufficient condition. If
%(∆) < λn(Ac),

then A = [Ac −∆, Ac + ∆] is positive definite.

Algorithm. See p. 61.

Comment. The algorithm is based on the above necessary and sufficient condition (iv),
and also employs the sufficient condition.

Operation. The algorithm in a finite number of steps checks positive definiteness of A.

Special features. The connection of positive definiteness with regularity in the above
condition (iv) is worth noticing.

References. [101], [99].

20Each matrix Azz = Ac − Tz∆Tz, z ∈ Yn, is symmetric.
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3.17 Hurwitz stability

Definition. A square matrix A is called Hurwitz stable if Re λ < 0 for each eigenvalue λ
of A.

Definition. A square interval matrix A is called Hurwitz stable if each A ∈ A is Hurwitz
stable.

Problem. Given A, check it for Hurwitz stability.

A negative result. For a general square interval matrix A, Hurwitz stability of all
vertex matrices21 of A is not sufficient for Hurwitz stability of A (it was wrongly stated
so in [14], but shown to be erroneous in [43] and independently in [4]). However, such a
characterization is possible for symmetric interval matrices.

Necessary and sufficient condition. A symmetric interval matrix A = [Ac−∆, Ac+∆]
is Hurwitz stable if and only if the interval matrix [−Ac−∆,−Ac+∆] is positive definite.22

Complexity. Checking Hurwitz stability is NP-hard (even for symmetric interval matri-
ces).

Sufficient condition. Let A = [A,A] be a (nonsymmetric) square interval matrix. If
the symmetric interval matrix

As = [(A + AT )/2, (A + A
T
)/2]

is Hurwitz stable, then A is Hurwitz stable. Many other sufficient conditions are surveyed
in [60].

Algorithm. See p. 62.

Comment. The algorithm employs both the necessary and sufficient condition and the
sufficient condition.

Operation. If A is symmetric, then the algorithm in a finite number of steps checks
Hurwitz stability of A. It fails to give any result if A is nonsymmetric and As is not
Hurwitz stable.

Special features. All the properties of interval matrices considered in this chapter so far
were characterized in terms of the matrices Ayz, y, z ∈ Yn (see p. 10). Hurwitz stability
is the first exception.

References. [101], [99], [14], [43], [4], [60], [68].

21Vertex matrix of A = [A,A] is any matrix A satisfying Aij ∈ {Aij , Aij} for each i, j; each Ayz is a
vertex matrix, see p. 16.

22See p. 31.
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3.18 Schur stability

Definition. A square matrix A is called Schur stable if %(A) < 1.

Definition. A symmetric interval matrix A is called Schur stable if each symmetric
A ∈ A is Schur stable.

Comment. Hence, we do not take into account the nonsymmetric matrices contained
in A. The reasons for it are purely technical.

Problem. Given a symmetric A, check it for Schur stability.

Necessary and sufficient condition. A symmetric interval matrix A = [A,A] is Schur
stable if and only if the symmetric interval matrices [A− I, A− I] and [−A− I,−A− I]
are Hurwitz stable.

Complexity. Checking Schur stability of symmetric interval matrices is NP-hard.

Algorithm. See p. 63.

Operation. The algorithm in a finite number of steps checks Schur stability of a sym-
metric interval matrix A.

References. [101], [99].
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3.19 Full column rank

Definition. A matrix A ∈ Rm×n is said to have full column rank if rank(A) = n (or,
equivalently, if Ax = 0 implies x = 0).

Definition. An m× n interval matrix A is said to have full column rank if each A ∈ A
has full column rank.

Comment. This is the only property in this chapter formulated for rectangular interval
matrices.

Problem. Check whether a given m× n interval matrix A has full column rank.

Necessary and sufficient condition. A = [Ac − ∆, Ac + ∆] has full column rank if
and only if the inequality

|Acx| ≤ ∆|x|
has only the trivial solution x = 0.

Complexity. Checking full column rank is NP-hard (it is NP-hard even in the square
case).

Sufficient condition. Let Ac have full column rank and let

%(|(AT
c Ac)

−1AT
c |∆) < 1.

Then A = [Ac −∆, Ac + ∆] has full column rank.

Comment. (AT
c Ac)

−1AT
c is the Moore-Penrose inverse A+

c of Ac.

Algorithm. Check the above sufficient condition.

Special features. For square interval matrices, this notion is equivalent to regularity
(see p. 17).

References. [104].



Chapter 4

Interval linear equations (square
case)

Subject. In this chapter we consider interval linear equations Ax = b with a square
n× n interval matrix A.

35
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4.1 Interval vectors: definition and basic notations

Definition. An interval vector is a one-column interval matrix

b = {b ; b ≤ b ≤ b},

where b, b ∈ Rm, b ≤ b.

Notation. We again use the center vector

bc = 1
2
(b + b)

and the nonnegative radius vector

δ = 1
2
(b− b).

Comment. We employ both forms b = [b, b] = [bc − δ, bc + δ]. Notice that interval
matrices and vectors are typeset in boldface letters.

Vectors by. For an m-dimensional interval vector b = [bc− δ, bc + δ], in analogy with the
matrices Ayz (p. 16), we define vectors

by = bc + Tyδ

for each y ∈ Ym.

Explanation. Then for each such a y we have

(by)i = (bc)i + yiδi =

{
bi if yi = −1,

bi if yi = 1

(i = 1, . . . , m), so that by ∈ b for each y ∈ Ym. In particular, b−e = b and be = b.
Together with matrices Ayz, vectors by are used in finite characterizations of interval
problems having right-hand sides.
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4.2 The solution set

Definition. Given an n×n interval matrix A = [Ac−∆, Ac +∆] and an interval n-vector
b = [bc − δ, bc + δ], the set

X = {x ; Ax = b for some A ∈ A, b ∈ b}

is called the solution set of the (formally written) interval linear system Ax = b.

Problem. Describe the solution set of Ax = b.

Formula.1 We have
X = {x ; |Acx− bc| ≤ ∆|x|+ δ}.

Comment. Observe that no assumptions concerning A or b are made.

Complexity. Verifying whether a given x belongs to X can be performed in polynomial
time.

Special features. The solution set is nonconvex in general, but its intersection with
each orthant is a convex polyhedron (possibly empty). If A is regular, then X is compact
and connected [10]; if A is singular, then each component of X is unbounded [40].

References. [77], [71], [10], [40], [108].

1The Oettli-Prager theorem [77].
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4.3 The hull

Fact. If A is regular, then the solution set X is compact (p. 37) and therefore bounded.

Definition. If A is regular, then the interval vector [x, x] given by

xi = min
x∈X

xi,

xi = max
x∈X

xi (i = 1, . . . , n),

(i.e., the narrowest interval vector containing the solution set X) is called the interval
hull2 of the solution set X.

Problem. Compute the interval hull of the solution set X of an interval linear system
Ax = b with A regular.

Formulae.3 Let Z be any subset of Yn such that for each x ∈ X there exists a z ∈ Z
with Tzx ≥ 0. If for each z ∈ Z the equations

QAc − |Q|∆Tz = I, (4.1)

QAc + |Q|∆Tz = I (4.2)

have solutions4 Qz and Q−z, respectively, then A is regular5 and for the interval hull [x, x]
there holds

x = min
z∈Z

(Q−zbc − |Q−z|δ),
x = max

z∈Z
(Qzbc + |Qz|δ)

(componentwise).

Comment. The first assumption concerning Z is satisfied e.g. for Z = Yn. The algorithm
referenced below attempts to make Z as small as possible. For Qz matrices, see pp. 19
and 59.

Complexity. Computing the hull of the solution set is an NP-hard problem.

Algorithm. See p. 64.

Operation. The algorithm in a finite number of steps either computes the hull, or states
singularity of A.

Special features. This is a not-a-priori-exponential algorithm. Its number of steps
depends on the cardinality of the set Z. For example, if X ⊂ (Rn

z )◦, then Z = {z} and
only two matrices (Qz and Q−z) are to be computed, see p. 39; if 0 ∈ X◦, then Z = Yn

and we must compute 2n of them (the superscript “◦” denotes the interior).

References. (The algorithm has not been published.) [92], [40], [110], [108], [76], [6],
[11], [2], [71].

2Or simply “hull”.
3The result is formulated in this somewhat complicated form in order to circumvent the assumption

of regularity of A which is verified (or disproved) on the way.
4If (4.1) or (4.2) does not have a solution, then A is singular, see p. 19.
5Which, in turn, guarantees that the solutions Qz, Q−z of (4.1), (4.2) are unique, see p. 19.
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4.4 The solution set lying in a single orthant

Formulae. Let A be regular. Then X ⊂ (Rn
z )◦ holds6 for some z ∈ Yn if and only if

Tz(A
−1
c bc) > 0, (4.3)

Tz(Q−zbc − |Q−z|δ) > 0, (4.4)

Tz(Qzbc + |Qz|δ) > 0. (4.5)

In this case the hull [x, x] is given by

x = Q−zbc − |Q−z|δ, (4.6)

x = Qzbc + |Qz|δ. (4.7)

Algorithm. If (4.3)- (4.5) are satisfied, then the algorithm hull (see p. 64) detects this
situation and computes the hull directly by (4.6)-(4.7).

Operation. In this case the algorithm requires computing two matrices (Qz and Q−z)
only.

Special features. This is a rare case when the bounds of the hull can be given explicitly
by closed-form formulae.

References. (Unpublished.) [6], [11], [90].

6(Rn
z )◦ is the interior of Rn

z .
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4.5 Enclosure of the solution set

Definition. An interval vector [x, x] satisfying X ⊆ [x, x] is called an enclosure of the
solution set X.

Problem. Given an interval linear system Ax = b with regular A, compute an enclosure
of its solution set X.

Comment. This weakened requirement is a consequence of the NP-hardness of comput-
ing the interval hull of the solution set, see p. 38.

Formulae. Let A = [Ac−∆, Ac+∆] satisfy %(|A−1
c |∆) < 1 (see p. 17). Then the interval

vector [x, x] computed by the following formulae is an enclosure7 of the solution set X:

M = (I − |A−1
c |∆)−1,

µ = (M11, . . . , Mnn)T ,

Tν = (2Tµ − I)−1,

xc = A−1
c bc,

x∗ = M(|xc|+ |A−1
c δ|),

x
˜

= −x∗ + Tµ(xc + |xc|),
x̃ = x∗ + Tµ(xc − |xc|),
x = min{x

˜
, Tνx

˜
},

x = max{x̃, Tν x̃}.

Complexity. This enclosure is computed in polynomial time.

Algorithm. See p. 65, up to the line “flag = ′enclosure computed′;” (the rest of the
algorithm is explained on p. 41).

Comment. The algorithm works only under the condition %(|A−1
c |∆) < 1.

Operation. The algorithm in a finite number of steps either computes an enclosure, or
fails.

Special features. The bounds given by the HBR enclosure are always at least as good
as the componentwise Bauer-Skeel bounds8, and they are better in each entry provided
(|A−1

c |∆)ii > 0 holds for each i.

Apology. At this place I apologize to all colleagues who have ever written papers on
enclosures for not having quoted their results here. Because of the “one-topic-one-page”
approach I could choose only one type, and I opted for the HBR enclosure because of its
special properties (p. 41).

References. [31], [15], [95], [108], [100], [74], [72]; [8], [130], [131]; [1], [2], [7], [12], [24],
[26], [27], [29], [30], [32], [33], [36], [50], [53], [55], [61], [62], [63], [64], [67], [69], [71], [73],
[81], [85], [112], [113], [114], [119], [124], [127], [129].

7Called the Hansen-Bliek-Rohn enclosure (abbreviated as HBR).
8For the Bauer-Skeel bounds, see e.g. [131].
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4.6 Overestimation of the HBR enclosure

Fact. By definition (see p. 40), any enclosure [x, x] satisfies [x, x] ⊆ [x, x], where [x, x] is
the interval hull.

Problem. Determine the overestimation of the enclosure.9

Comment. Such information is usually not available. The HBR enclosure was chosen
for inclusion here because of possessing this particular property.

Formulae. Under assumption and notations from p. 40, let [x, x] be the interval hull and
[x, x] the HBR enclosure. Then for each i ∈ {1, . . . , n} we have

x
i
≤ xi ≤ x

i
+ di, (4.8)

xi − di ≤ xi ≤ xi, (4.9)

where

di = eT
i (I − |A−1

c Tz∆|)−1|(TzA
−1
c Tz − |A−1

c |)(ξ
i
∆Mei + ∆x∗ + δ)|,

di = eT
i (I − |A−1

c Tz∆|)−1|(TzA
−1
c Tz − |A−1

c |)(ξi∆Mei + ∆x∗ + δ)|,
ξ

i
= (|x|+ x− xc − |xc|)i,

ξi = (|x| − x + xc − |xc|)i

and z, z are given by

zj =

{
sgn (xc)j if j 6= i,
−1 if j = i,

zj =

{
sgn (xc)j if j 6= i,
1 if j = i

(j = 1, . . . , n).

Comment. Computing d, d requires computation of up to 2n inverses (but it usually
pays off). If this number is considered too large, the matrices (I − |A−1

c Tz∆|)−1, (I −
|A−1

c Tz∆|)−1 in the formulae for di, di can be replaced by the matrix M , and the whole
theorem will remain in force.

Complexity. Vectors d, d can be computed in polynomial time.

Algorithm. See p. 65, the lines after “flag = ′enclosure computed′;”.

Operation. The algorithm in a finite number of steps computes nonnegative vectors d,
d satisfying (4.8), (4.9).

Special features. If Ac is a diagonal matrix with positive diagonal entries, then TzA
−1
c Tz−

|A−1
c | = TzA

−1
c Tz − |A−1

c | = 0 and consequently d = d = 0, so that [x, x] = [x, x]. Hence,
in this case the HBR enclosure yields the exact interval hull.

References. (Unpublished.) [31], [15], [95], [74], [72].

9Of course, without computing the hull, which is an NP-hard problem.
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Chapter 5

Interval linear equations and
inequalities (rectangular case)

Subject. In this chapter we consider systems of interval linear equations Ax = b (or
systems of interval linear inequalities Ax ≤ b) with a rectangular m×n interval matrix A.
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5.1 (Z, z)-solutions

Intro. Let A = [Ac −∆, Ac + ∆] be an m× n interval matrix and b = [bc − δ, bc + δ] an
interval m-vector. Under an interval linear system Ax = b we understand the family of
all systems Ax = b with A ∈ A, b ∈ b.

Definition. Let |Z| = E ∈ Rm×n and |z| = e ∈ Rm. A vector x ∈ Rn is said to be a
(Z, z)-solution of a system Ax = b if for each Aij ∈ [Aij, Aij] with Zij = −1 and for each

bi ∈ [bi, bi] with zi = −1 there exist Aij ∈ [Aij, Aij] with Zij = 1 and bi ∈ [bi, bi] with
zi = 1 such that Ax = b holds.1

Problem. Given Z and z, describe the set of all (Z, z)-solutions of Ax = b.

Comment. Despite the complexity of the definition, it turns out that description of
(Z, z)-solutions becomes wonderfully simple as soon as the Hadamard product is em-
ployed.

Formula.2 A vector x ∈ Rn is a (Z, z)-solution of Ax = b if and only if it satisfies

|Acx− bc| ≤ (Z ◦∆)|x|+ z ◦ δ. (5.1)

Complexity. Complexity of checking whether a system Ax = b has a (Z, z)-solution
depends on the choice of Z and z; see pp. 45 and 46 for two opposite examples.

Algorithm. For verification whether a given x is a (Z, z)-solution of Ax = b, check
(5.1).

Special features. This is a generalization of the Oettli-Prager theorem [77], p. 37
(which can be obtained from (5.1) by putting Z = E and z = e). Both its formulation
and proof were not straightforward. Shary presented his definition of (Z, z)-solutions,
which he called “∀∃-solutions”, in [125]. His formulation of the result contained interval
arithmetic operations. A formula not using these operations and proved from the Oettli-
Prager theorem was given in this author’s letter to Shary and Lakeyev [102]. The final
step towards utmost simplicity by employing the Hadamard product was done by Lakeyev
in [57].

References. [125], [57], [102], [77].

1Thus “−1” corresponds to “∀” and “1” to “∃”. It could be argued that the reverse order would be
more natural, but we would have to pay for it by introducing minus signs into the main formula (5.1).

2By Shary, Lakeyev and Rohn.
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5.2 Tolerance solutions

Definition. A (−E, e)-solution (see p. 44) is called a tolerance solution of Ax = b. In
other words, x is a tolerance solution if it satisfies

{Ax ; A ∈ A} ⊆ b.

Problem. Describe the set of tolerance solutions of Ax = b.

Formula. For the set Xtol of tolerance solutions of Ax = b we have

Xtol = {x ; |Acx− bc| ≤ −∆|x|+ δ}
= {x1 − x2 ; Ax1 − Ax2 ≤ b, Ax1 − Ax2 ≥ b, x1 ≥ 0, x2 ≥ 0}. (5.2)

Complexity. Checking whether a system Ax = b has a tolerance solution can be per-
formed in polynomial time.

Algorithm. Use a polynomial-time linear programming algorithm to check whether the
system of linear inequalities in (5.2) has a solution.

Operation. The algorithm in a finite number of steps checks whether Ax = b has a
tolerance solution (and, in the positive case, also finds such a solution).

Special features. Introduction of the notion of tolerance solutions (as early as in 1970’s)
was motivated by considerations concerning crane construction [75] and input-output
planning with inexact data of the socialist economy of former Czechoslovakia [86].

References. [75], [86], [89], [70], [21], [47], [45], [46], [128], [118], [121], [122], [123], [58].
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5.3 Control solutions

Definition. An (E,−e)-solution (see p. 44) is called a control solution of Ax = b. In
other words, x is a control solution if it satisfies

b ⊆ {Ax ; A ∈ A}.

Problem. Describe the set of control solutions of Ax = b.

Formula. For the set Xcon of control solutions of Ax = b we have

Xcon = {x ; |Acx− bc| ≤ ∆|x| − δ}.

Complexity. The problem of checking whether a system Ax = b has a control solution
is NP-complete.

Special features. Control solutions were introduced in [120]. The choice of the word
“control” was probably motivated by the fact that each vector b ∈ b can be reached by
Ax when properly controlling the coefficients of A within A.

References. [120], [123], [126], [58], [127].
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5.4 Strong solvability of equations

Definition. Let A = [Ac−∆, Ac +∆] be an m×n interval matrix and b = [bc− δ, bc + δ]
an interval m-vector. We say that the system Ax = b is strongly solvable if each system
Ax = b with A ∈ A, b ∈ b has a solution.

Problem. Check whether a given system Ax = b is strongly solvable.

Necessary and sufficient condition. A system Ax = b is strongly solvable if and only
if for each y ∈ Ym the system3

Ayex
1 − A−yex

2 = by, (5.3)

x1 ≥ 0, x2 ≥ 0 (5.4)

has a solution x1
y, x2

y. Moreover, if this is the case, then for each A ∈ A, b ∈ b the system
Ax = b has a solution in the set Conv{x1

y − x2
y ; y ∈ Ym}.

Complexity. The problem of checking strong solvability of interval linear equations is
NP-hard.

Algorithm. See p. 66.

Comment. The algorithm uses a (not specified) polynomial-time linear programming
subroutine for solving the system (5.3), (5.4).

Operation. The algorithm in a finite number of steps checks strong solvability of Ax = b.

Special features. The proof of the above necessary and sufficient condition is nontrivial
and uses a new existence theorem for systems of linear equations [93], [94].

References. [109], [108], [93], [94].

3Aye = Ac − Ty∆, A−ye = Ac + Ty∆ and by = bc + Tyδ, see p. 10.
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5.5 Strong solvability of inequalities

Definition. Let A = [A, A] be an m × n interval matrix and b = [b, b] an interval m-
vector. We say that the system Ax ≤ b is strongly solvable if each system Ax ≤ b with
A ∈ A, b ∈ b has a solution.

Problem. Check whether a given system Ax ≤ b is strongly solvable.

Necessary and sufficient condition. A system Ax ≤ b is strongly solvable if and only
if the system

Ax1 − Ax2 ≤ b, (5.5)

x1 ≥ 0, x2 ≥ 0 (5.6)

has a solution.

Complexity. The problem of checking strong solvability of interval linear inequalities can
be solved in polynomial time.

Algorithm. See p. 67.

Comment. The algorithm uses a (not specified) polynomial-time linear programming
subroutine for solving the system (5.5), (5.6).

Operation. The algorithm in a finite number of steps checks strong solvability of Ax ≤ b.

Special features. If a system Ax ≤ b is strongly solvable, then all the systems Ax ≤ b,
A ∈ A, b ∈ b, have a common solution (a nontrivial fact), which is called a strong solution
of Ax ≤ b. The algorithm on p. 67 finds a strong solution if it exists. Also, observe the
difference: checking strong solvability of interval linear equations is NP-hard, whereas the
same problem for interval linear inequalities is solvable in polynomial time.

References. [111], [108].



Chapter 6

Interval linear programming

Subject. This last, and shortest, chapter is dedicated to a single topic, namely the range
of the optimal value of an interval linear programming problem.
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6.1 Reminder: optimal value of a linear program

Definition. The value1

f(A, b, c) = inf{cT x ; Ax = b, x ≥ 0}

is called the optimal value of a linear program

minimize cT x

subject to
Ax = b, x ≥ 0.

Comment. Hence, f(A, b, c) ∈ [−∞,∞].

Problem. Given A, b, c, compute f(A, b, c).

Complexity. The problem can be solved in polynomial time.

Algorithm. The first polynomial-time linear programming algorithm was described by
Khachiyan in [48]. Many of them exist nowadays; see e.g. [78].

Special features. A polynomial-time linear programming subroutine is implicitly used
in the algorithms on pp. 66, 67 and 68.

References. [20], [48], [44], [78].

1In linear programming only finite value of f(A, b, c) is accepted as the optimal value; we use this
formulation for the sake of utmost generality of the results.
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6.2 Range of the optimal value

Definition. Let A = [A, A] = [Ac − ∆, Ac + ∆] be an m × n interval matrix and let
b = [b, b] = [bc − δ, bc + δ] and c = [c, c] be an m-dimensional and n-dimensional interval
vector, respectively. The family of linear programming problems

min{cT x ; Ax = b, x ≥ 0} (6.1)

with data satisfying
A ∈ A, b ∈ b, c ∈ c (6.2)

is called an interval linear programming problem.

Definition. The interval [f(A,b, c), f(A,b, c)], where

f(A,b, c) = inf{f(A, b, c) ; A ∈ A, b ∈ b, c ∈ c},

f(A,b, c) = sup{f(A, b, c) ; A ∈ A, b ∈ b, c ∈ c},
is called the range of the optimal value of the interval linear programming problem (6.1),
(6.2).

Comment. The endpoints of [f(A,b, c), f(A,b, c)] may be ±∞.

Problem. Given A, b, c, compute [f(A,b, c), f(A,b, c)].

Formula. We have

f(A,b, c) = inf{cT x ; Ax ≤ b, Ax ≥ b, x ≥ 0},
f(A,b, c) = sup

y∈Ym

f(Aye, by, c). (6.3)

Comment. Hence, solving only one linear programming problem is needed to evaluate
f(A,b, c), whereas up to 2m of them are to be solved to compute f(A,b, c) according to
(6.3). Although the set Ym is finite, we use “sup” here because some of the values may
be infinite. Notice the absence of any assumptions: the result is fully general.

Complexity. Computing f(A,b, c) can be performed in polynomial time, whereas com-

putation of f(A,b, c) is NP-hard.

Algorithm. See p. 68.

Operation. The algorithm computes the range of the optimal value in a finite number of
steps.

Special features. If f(A,b, c) is finite, then

f(A,b, c) = sup{bT
c p + δT |p| ; AT

c p−∆T |p| ≤ c},
so that in this case the upper bound can be computed by solving one nonlinear programming
problem.

References. [87], [88], [108], [59], [52], [13], [65], [66], [37], [38], [39], [42], [98], [88], [49],
[51], [67], [82], [132].
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Chapter 7

Algorithms

Subject. Here we give MATLAB-like descriptions of fifteen basic algorithms that have
been referred to in the previous chapters.

Scheme. The following scheme demonstrates the interdependence of the algorithms
(a → b means that the algorithm a is used as a subroutine in the algorithm b). It
explains the central role played by the algorithms ynset, signaccord and hull.

norminfone
↑

ynset −→ strosolveq
↓ ↑

range ←− linear programming −→ strosolvin

signaccord −→ qzmatrix −→ hull −→ inverse
↓

regularity −→ posdefness −→ hurwitzstab
↓

schurstab

The algorithms singular and hbr do not use subroutines.

Algorithm description. For algorithm form, see p. 6. In particular, [ ] denotes the
empty matrix or vector (which is not used in linear algebra, but is a useful programming
tool); it is assigned to matrices or vectors that have not been computed.
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7.1 An algorithm for generating the set Yn

function Y = ynset(n)
z = 0 ∈ Rn; y = e ∈ Rn; Y = {y};
while z 6= e

k = min{i ; zi = 0};
for i = 1 : k − 1, zi = 0; end
zk = 1;
yk = −yk;
Y = Y ∪ {y};

end

Figure 7.1: An algorithm for generating the set Yn (p. 12).
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7.2 An algorithm for computing the norm ‖A‖∞,1

function ν = norminfone (A)
y = e ∈ Rn; z = 0 ∈ Rn−1;
x = Ay;
ν = ‖x‖1;
while z 6= e

k = min{i ; zi = 0};
x = x− 2ykA•k;
ν = max{ν, ‖x‖1};
for i = 1 : k − 1, zi = 0; end
zk = 1;
yk = −yk;

end

Figure 7.2: An algorithm for computing the norm ‖A‖∞,1 (p. 13).
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7.3 The sign accord algorithm

function [x, flag, As] = signaccord (A,B, b)
% Finds a solution to Ax + B|x| = b or states
% singularity of [A− |B|, A + |B|].
x = [ ]; flag = ′singular′; As = [ ];
if A is singular, As = A; return, end
p = 0 ∈ Rn;
x = A−1b;
z = sgn x;
if A + BTz is singular, As = A + BTz; x = [ ]; return, end
x = (A + BTz)

−1b;
C = −(A + BTz)

−1B;
while zjxj < 0 for some j

k = min{j ; zjxj < 0};
if 1 + 2zkCkk ≤ 0

τ = (−1)/(2zkCkk);
As = A + B(Tz − 2τzkeke

T
k );

x = [ ];
return

end
pk = pk + 1;
zk = −zk;
if log2 pk > n− k, x = [ ]; return, end
α = 2zk/(1− 2zkCkk);
x = x + αxkC•k;
C = C + αC•kCk•;

end
flag = ′solution found′;

Figure 7.3: The sign accord algorithm (p. 14).

Comment. After each updating of x and C there holds x = (A + BTz)
−1b and C =

−(A + BTz)
−1B for the current z. The variable pk registers the number of occurrences

of k; if pk > 2n−k for some k, then [A− |B|, A + |B| ] is singular (see [92]).



7.4 An algorithm for checking regularity 57

7.4 An algorithm for checking regularity

function flag = regularity (A)
if Ac is singular, flag = ′singular′; return, end
R = A−1

c ;
if %(|R|∆) < 1, flag = ′regular′; return, end
if maxj(|R|∆)jj ≥ 1, flag = ′singular′; return, end
b = e; γ = mink |Rb|k;
for i = 1 : n

for j = 1 : n
b′ = b; b′j = −b′j;
if mink |Rb′|k > γ, γ = mink |Rb′|k; b = b′; end

end
end
[x, x, flag] = hull (A, [b, b]);
if flag = ′hull computed′, flag = ′regular′; return
end

Figure 7.4: An algorithm for checking regularity (p. 17).

Comment. Both the for loops may be omitted without affecting functioning of the
algorithm. They form only an empirical tool [41] aimed at diminishing the number of
orthants to be visited by the subroutine hull.
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7.5 An algorithm for finding a singular matrix

function [flag, As] = singular (A)
flag = ′singular′; As = [ ];
if Ac is singular, As = Ac; return, end
y = e ∈ Rn; z = e ∈ Rn; t = 0 ∈ R2n−1;
if A is singular, As = A; return, end
D = A−1;
while t 6= e

k = min{i ; ti = 0};
for i = 1 : k − 1, ti = 0; end
tk = 1;
if k ≤ n

i = k; p = eT
i AcD − eT

i ;
if 2pi + 1 ≤ 0

τ = −yi/(2pi);
As = Ac − (Ty − 2τeie

T
i )∆Tz; return

end
α = 2/(2pi + 1);
D = D − αDeip;
yi = −yi;

else
j = k − n; p = DAcej − ej;
if 2pj + 1 ≤ 0

τ = −zj/(2pj);
As = Ac − Ty∆(Tz − 2τeje

T
j ); return

end
α = 2/(2pj + 1);
D = D − αpeT

j D;
zj = −zj;

end
end
flag = ′regular′;

Figure 7.5: An algorithm for finding a singular matrix (p. 18).

Comment. After each updating of y or z there holds D = A−1
yz .
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7.6 An algorithm for computing Qz

function [Qz, f lag] = qzmatrix (A, z)
for i = 1 : n

[x, flag] = signaccord (AT
c ,−Tz∆

T , ei);
if flag = ′singular′, Qz = [ ]; return
end
(Qz)i• = xT ;

end
flag = ′solution computed′;

Figure 7.6: An algorithm for computing Qz (p. 19).
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7.7 An algorithm for computing the inverse

function [B,B, flag] = inverse (A)
for j = 1 : n

[x, x, flag] = hull (A, [ej, ej]);
if flag = ′singular′, B = [ ]; B = [ ]; return
end
B•j = x; B•j = x;

end
flag = ′inverse computed′;

Figure 7.7: An algorithm for computing the inverse (p. 20).
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7.8 An algorithm for checking positive definiteness

function flag = posdefness (A)
if Ac is not positive definite

flag = ′not positive definite′; return
end
if λmin(Ac) > %(∆)

flag = ′positive definite′; return
end
flag = regularity (A);
if flag = ′regular′, flag = ′positive definite′; return
else flag = ′not positive definite′; return
end

Figure 7.8: An algorithm for checking positive definiteness (p. 31).
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7.9 An algorithm for checking Hurwitz stability

function flag = hurwitzstab (A)
A′

c = (Ac + AT
c )/2; ∆′ = (∆ + ∆T )/2;

flag = posdefness ([−A′
c −∆′,−A′

c + ∆′]);
if flag = ′positive definite′

flag = ′Hurwitz stable′; return
else

if (A′
c = Ac and ∆′ = ∆)

flag = ′not Hurwitz stable′; return
else

flag = ′Hurwitz stability not verified′; return
end

end

Figure 7.9: An algorithm for checking Hurwitz stability (p. 32).
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7.10 An algorithm for checking Schur stability

function flag = schurstab (A)
if (AT

c 6= Ac or ∆T 6= ∆)
flag = ′Schur stability not verified′; return

end
flag = hurwitzstab ([Ac − I −∆, Ac − I + ∆]);
if flag = ′not Hurwitz stable′

flag = ′not Schur stable′; return
end
flag = hurwitzstab ([−Ac − I −∆,−Ac − I + ∆]);
if flag = ′not Hurwitz stable′

flag = ′not Schur stable′; return
end
flag = ′Schur stable′;

Figure 7.10: An algorithm for checking Schur stability (p. 33).



64 7 Algorithms

7.11 An algorithm for computing the hull

function [x, x, flag] = hull (A,b)
if Ac is singular

x = [ ]; x = [ ]; flag = ′singular′; return
end
x = A−1

c bc; x = x;
z = sgn x; Z = {z}; D = ∅;
while Z 6= ∅

select z ∈ Z; Z = Z − {z}; D = D ∪ {z};
[Q−z, f lag] = qzmatrix(A,−z);
if flag = ′singular′, x = [ ]; x = [ ]; return, end
x
˜

= Q−zbc − |Q−z|δ;
[Qz, f lag] = qzmatrix(A, z);
if flag = ′singular′, x = [ ]; x = [ ]; return, end
x̃ = Qzbc + |Qz|δ;
if x

˜
≤ x̃

x = min{x, x
˜
};

x = max{x, x̃};
for j = 1 : n

z′ = z; z′j = −z′j;
if (x

˜
jx̃j ≤ 0 and z′ /∈ Z ∪D), Z = Z ∪ {z′}; end

end
end

end
flag = ′hull computed′;

Figure 7.11: An algorithm for computing the hull (p. 38).

Comment. Z is the set of sign vectors of orthants to be visited; D is the set of those
that already have been visited.
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7.12 The Hansen-Bliek-Rohn enclosure algorithm

function [x, x, d, d, f lag] = hbr (A,b)
if (Ac is singular or I − |A−1

c |∆ is singular or (I − |A−1
c |∆)−1 6≥ I)

x = [ ]; x = [ ]; d = [ ]; d = [ ]; flag = ′enclosure not computed′;
return

end
M = (I − |A−1

c |∆)−1;
µ = (M11, . . . , Mnn)T ;
Tν = (2Tµ − I)−1;
xc = A−1

c bc;
x∗ = M(|xc|+ |A−1

c δ|);
x
˜

= −x∗ + Tµ(xc + |xc|);
x̃ = x∗ + Tµ(xc − |xc|);
x = max{x̃, Tν x̃};
x = min{x

˜
, Tνx

˜
};

flag = ′enclosure computed′;
z = sgn xc;

ξ = |x| − x + xc − |xc|;
ξ = |x|+ x− xc − |xc|;
for i = 1 : n

z′ = z; z′i = −1; N = (I − |A−1
c Tz′∆|)−1;

di = (N |(Tz′A
−1
c Tz′ − |A−1

c |)(ξ
i
∆Mei + ∆x∗ + δ)|)i;

z′i = 1; N = (I − |A−1
c Tz′∆|)−1;

di = (N |(Tz′A
−1
c Tz′ − |A−1

c |)(ξi∆Mei + ∆x∗ + δ)|)i;
end

Figure 7.12: The Hansen-Bliek-Rohn enclosure algorithm (pp. 40, 41).
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7.13 An algorithm for checking strong solvability of

equations

At the start of the algorithm the equations of the system Ax = b should be reordered in
such a way that the matrix (∆ δ) has first q rows nonzero (0 ≤ q ≤ m) and the remaining
m− q rows zero.

function flag = strosolveq(A,b)
reorder the equations;
z = 0 ∈ Rq; y = e ∈ Rq; flag = ′strongly solvable′;
A = A; B = A; b = b;
if Ax1 −Bx2 = b, x1 ≥ 0, x2 ≥ 0 is not solvable

flag = ′not strongly solvable′; return
end
while z 6= e

k = min{i ; zi = 0};
for i = 1 : k − 1, zi = 0; end
zk = 1;
yk = −yk;
if yk = 1

Ak• = Ak•; Bk• = Ak•; bk = bk;
else

Ak• = Ak•; Bk• = Ak•; bk = bk;
end
if Ax1 −Bx2 = b, x1 ≥ 0, x2 ≥ 0 is not solvable

flag = ′not strongly solvable′; return
end

end

Figure 7.13: An algorithm for checking strong solvability of equations (p. 47).

Comment. After each updating of A, B and b there holds A = Aye, B = A−ye, b = by

for the current y.
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7.14 An algorithm for checking strong solvability of

inequalities

function [x, flag] = strosolvin(A,b)
solve the system Ax1 − Ax2 ≤ b, x1 ≥ 0, x2 ≥ 0;
if it has a solution x1, x2

x = x1 − x2; flag = ′strong solution found′;
else

x = [ ]; flag = ′not strongly solvable′;
end

Figure 7.14: An algorithm for checking strong solvability of inequalities (p. 48).
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7.15 An algorithm for computing the range of the

optimal value

At the start of the algorithm the equations of the system Ax = b should be reordered in
such a way that the matrix (∆ δ) has first q rows nonzero (0 ≤ q ≤ m) and the remaining
m− q rows zero.

function [f, f , f lag] = range(A,b, c)
reorder the equations;

compute f = inf{cT x ; Ax ≤ b, Ax ≥ b, x ≥ 0};
z = 0 ∈ Rq; y = e ∈ Rq;

A = A; b = b; f = f(A, b, c);

while (z 6= e and f < ∞)
k = min{i ; zi = 0};
for i = 1 to k − 1, zi = 0; end
zk = 1;
yk = −yk;
if yk = 1

Ak• = Ak•; bk = bk;
else

Ak• = Ak•; bk = bk;
end

f = max{f, f(A, b, c)};
end
flag = ′range computed′;

Figure 7.15: An algorithm for computing the range of the optimal value (p. 51).

Comment. After each updating of A and b there holds A = Aye, b = by for the current y.
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[111] J. Rohn and J. Kreslová, Linear interval inequalities, Linear and Multilinear Alge-
bra, 38 (1994), pp. 79–82. http://www.cs.cas.cz/˜rohn/publist/71.ps 48

[112] S. M. Rump, Solving algebraic problems with high accuracy, in A New Approach
to Scientific Computation, U. Kulisch and W. Miranker, eds., New York, 1983,
Academic Press, pp. 51–120. 40

[113] S. M. Rump, On the solution of interval linear systems, Computing, 47 (1992),
pp. 337–353. 40

[114] S. M. Rump, Verification methods for dense and sparse systems of equations, in
Topics in Validated Computations, J. Herzberger, ed., Amsterdam, 1994, North-
Holland, pp. 63–135. 40

[115] S. M. Rump, The distance between regularity and strong regularity, in Scientific
Computing and Validated Numerics, G. Alefeld, A. Frommer and B. Lang, eds.,
Mathematical Research, Vol. 90, Berlin, 1996, Akademie Verlag, pp. 105–117. 25

[116] S. M. Rump, Bounds for the componentwise distance to the nearest singular matrix,
SIAM Journal on Matrix Analysis and Applications, 18 (1997), pp. 83–103. 25

[117] S. M. Rump, Almost sharp bounds for the componentwise distance to the nearest
singular matrix, Linear and Multilinear Algebra, 42 (1998), pp. 93–108. 25

[118] S. P. Shary, O nekotorykh metodakh resheniya lineinoi zadachi o dopuskakh,
Preprint 6, Siberian Branch of the Soviet Academy of Sciences, Krasnoyarsk, 1989.
45

[119] S. P. Shary, A new class of algorithms for optimal solution of interval linear systems,
Interval Computations, 2 (1992), pp. 18–29. 40

[120] S. P. Shary, On controlled solution set of interval algebraic systems, Interval Com-
putations, 6 (1992), pp. 66–75. 46

[121] S. P. Shary, Solving the tolerance problem for interval linear systems, Interval Com-
putations, 2 (1994), pp. 6–26. 45

[122] S. P. Shary, Solving the linear interval tolerance problem, Mathematics and Com-
puters in Simulation, 39 (1995), pp. 53–85. 45

[123] S. P. Shary, Algebraic approach to the interval linear static identification, toler-
ance and control problems, or One more application of Kaucher arithmetic, Reliable
Computing, 2 (1996), pp. 3–33. 45, 46

http://www.cs.cas.cz/~rohn/publist/72.ps�
http://www.cs.cas.cz/~rohn/publist/71.ps�


78 Bibliography

[124] S. P. Shary, Algebraic solutions to interval linear equations and their applications,
in Numerical Methods and Error Bounds, G. Alefeld and J. Herzberger, eds., Math-
ematical Research, Vol. 89, Berlin, 1996, Akademie Verlag, pp. 224–233. 40

[125] S. P. Shary, A new approach to the analysis of static systems under interval uncer-
tainty, in Scientific Computing and Validated Numerics, G. Alefeld, A. Frommer,
and B. Lang, eds., Berlin, 1996, Akademie Verlag, pp. 118–132. 44

[126] S. P. Shary, Controllable solutions sets to interval static systems, Applied Mathe-
matics and Computation, 86 (1997), pp. 185–196. 46

[127] S. P. Shary, A new technique in systems analysis under interval uncertainty and
ambiguity, Reliable Computing, 8 (2002), pp. 321–418. 40, 46

[128] V. V. Shaydurov and S. P. Shary, Resheniye interval’noi algebraicheskoi zadachi o
dopuskakh, Preprint 5, Siberian Branch of the Soviet Academy of Sciences, Krasno-
yarsk, 1988. 45

[129] Y. I. Shokin, Interval’nyi analiz, Nauka, Novosibirsk, 1981. 40

[130] R. D. Skeel, Scaling for numerical stability in Gaussian elimination, Journal of the
ACM, 26 (1979), pp. 494–526. 40

[131] G. W. Stewart, Matrix Algorithms, Volume I: Basic Decompositions, SIAM,
Philadelphia, 1998. 40

[132] A. A. Vatolin, On the linear programming problems with interval coefficients (in
Russian), Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki, 24 (1984),
pp. 1629–1637. 51


