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Abstract We describe a general method for enclosing the solution set of a system of in-

terval linear equations. We present a general theorem and an algorithm in a MATLAB-

style code.
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inequality.

1 Introduction

In this paper we describe a general method for enclosing the solution set of a system of

interval linear equations. We present a general theorem (Theorem 3) and an algorithm

in a MATLAB-style code (Fig. 1). We call the result a “method”, not an “algorithm”,

because it involves solving absolute value matrix inequalities; different solutions yield

different enclosures. We plan to elaborate on this issue in a forthcoming paper.

The problem of enclosing the solution set of systems of interval linear equations

arises when solving global optimization problems or rigorously locating all solutions to

nonlinear systems, see, e.g., Kearfott [5]. Some related articles can be found in [3].

2 Notations

We use the following notations. Matrix inequalities, as A ≤ B or A < B, are understood

componentwise. The absolute value of a matrix A = (aij) is defined by |A| = (|aij |).
The same notations also apply to vectors that are considered one-column matrices. I is

the unit matrix, ej is the jth column of I, and e = (1, . . . , 1)T is the vector of all ones.
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Yn = {y | |y| = e} = {−1, 1}n is the set of all ±1-vectors in Rn, so that its cardinality

is 2n. Vectors y, z ∈ Yn are called adjacent if they differ in exactly one entry. Obviously,

y, z ∈ Yn are adjacent if and only if y = z − 2zjej for some j. For each x ∈ Rn we

define its sign vector sgn(x) by

(sgn(x))i =

{
1 if xi ≥ 0,

−1 if xi < 0
(i = 1, . . . , n),

so that sgn(x) ∈ Yn. For each z ∈ Rn we denote

Tz = diag (z1, . . . , zn) =




z1 0 . . . 0

0 z2 . . . 0
...

...
. . .

...

0 0 . . . zn


 ,

and Rn
z = {x | Tzx ≥ 0} is the orthant prescribed by the ±1-vector z ∈ Yn. An interval

matrix is a set of matrices

A = {A | |A−Ac| ≤ ∆ } = [Ac −∆, Ac + ∆],

and an interval vector is a one-column interval matrix

b = { b | |b− bc| ≤ δ } = [bc − δ, bc + δ].

3 The problem

Given an n × n interval matrix A = [Ac − ∆, Ac + ∆] and an interval n-vector b =

[bc − δ, bc + δ], the solution set of the system of interval linear equations Ax = b is

defined as

X(A,b) = {x | Ax = b for some A ∈ A, b ∈ b }.

The Oettli-Prager theorem [6] asserts that the solution set is described by

X(A,b) = {x | |Acx− bc| ≤ ∆|x|+ δ }.

If A is regular, then X(A,b) is compact and connected (Beeck [1]); if A is singular, then

each component of X(A,b) is unbounded (Jansson [4]). The solution set is generally of

a complicated nonconvex structure. In practical computations, therefore, we look for

an enclosure of it, i.e., for an interval vector x satisfying

X(A,b) ⊆ x.

The present text is dedicated to the problem of finding such an x under general cir-

cumstances when regularity/singularity of A is not known in advance (and is verified

on the way). The text owes much to Christian Jansson’s ideas in [4].
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4 The results

The core of our method consists in specifying a possibly small subset Z of Yn such that

X(A,b) ⊆
⋃

z∈Z

Rn
z .

In the first theorem such a set Z is described recursively ((a), (c) below) in terms of

the solution set only.

Theorem 1 Let A be an n × n interval matrix, b an interval n-vector, and let Z be

a subset of Yn having the following properties:

(a) sgn(x0) ∈ Z for some x0 ∈ X(A,b),

(b) X(A,b) ∩ Rn
z is bounded for each z ∈ Z,

(c) if z, y are adjacent, z ∈ Z, y ∈ Yn, and X(A,b) ∩ Rn
z ∩ Rn

y 6= ∅, then y ∈ Z.

Then A is regular and

X(A,b) ⊆
⋃

z∈Z

Rn
z (1)

holds.

Proof For brevity, denote X = X(A,b). Let X0 be the component of X (i.e. a

nonempty connected subset of X maximal with respect to inclusion) containing x0.

We shall prove that

X0 ⊆
⋃

z∈Z

Rn
z (2)

holds. Assume to the contrary that it is not so, so that there exists an x1 ∈ X0 such

that

x1 /∈
⋃

z∈Z

Rn
z .

Since X0 is connected, there exists a continuous mapping ϕ : [0, 1] → X0 with ϕ(0) =

x0 and ϕ(1) = x1. Let

τ = sup{ t | ϕ(t) ∈
⋃

z∈Z

Rn
z },

and put x∗ = ϕ(τ). Then x∗ ∈ ⋃
z∈Z

Rn
z because ϕ is continuous and

⋃
z∈Z

Rn
z is closed,

say x∗ ∈ Rn
z′ , z′ ∈ Z, hence x∗ 6= x1 and τ < 1. Put ε = 1 − τ and consider the

sequence

{ϕ(τ + ε/j)}∞j=1.

Since

ϕ(τ + ε/j) ∈
⋃

z/∈Z

Rn
z

for each j and since the set { z ∈ Yn | z /∈ Z } is finite, there exists a z′′ /∈ Z such that

ϕ(τ + ε/j) ∈ Rn
z′′ for infinitely many j. Taking the limit along this subsequence, we

get that x∗ ∈ Rn
z′′ because Rn

z′′ is closed. Thus we have that

x∗ ∈ Rn
z′ ∩ Rn

z′′
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where z′ ∈ Z and z′′ /∈ Z, so that z′ 6= z′′. Put

I = { i | z′i 6= z′′i } = {i1, . . . , im},

then

x∗i = 0

for each i ∈ I, and define vectors z0, z1, . . . , zm ∈ Yn by induction as follows:

z0 = z′

and

zj := zj−1, zj
ij

:= −zj
ij

for j = 1, . . . , m. Then z0 ∈ Z and by induction for each j = 1, . . . , m, zj−1 and zj are

adjacent, zj−1 ∈ Z and x∗ ∈ Rn
zj−1 ∩Rn

zj , x∗ ∈ X0 ⊆ X, hence zj ∈ Z by assumption

(c). Thus, by induction, zj ∈ Z for each j = 0, . . . , m. In particular, z′′ = zm ∈ Z,

which contradicts the previously established fact that z′′ /∈ Z. This contradiction finally

proves that (2) holds.

Now, (2) implies that

X0 ⊆
⋃

z∈Z

(X0 ∩ Rn
z ) ⊆

⋃

z∈Z

(X ∩ Rn
z ),

hence the component X0 is bounded by assumption (b). If A were singular, then, by

Jansson’s result in [4], each component of X would be unbounded. Since X0 is bounded,

this implies that A is regular and therefore X is connected (Beeck [1]); this means that

X0 = X, and (2) implies (1). ut

In the second theorem we further assume existence of an enclosure of each nonempty

set X(A,b) ∩ Rn
z , z ∈ Z (without specifying how such an enclosure should be found).

Theorem 2 Let A be an n × n interval matrix, b an interval n-vector, and let Z be

a subset of Yn having the following properties:

(a’) sgn(x0) ∈ Z for some x0 ∈ X(A,b),

(b’) for each z ∈ Z such that X(A,b) ∩ Rn
z 6= ∅ there exists an interval vector [xz , xz ]

satisfying X(A,b) ∩ Rn
z ⊆ [xz , xz ],

(c’) if z ∈ Z, X(A,b) ∩ Rn
z 6= ∅, and (xz)j(xz)j ≤ 0 for some j, then z − 2zjej ∈ Z.

Then A is regular and

X(A,b) ⊆
⋃

z∈Z0

[xz , xz ]

holds, where

Z0 = { z ∈ Z | X(A,b) ∩ Rn
z 6= ∅ }.

Proof We shall prove that assumptions (a’), (b’), (c’) imply validity of the assumptions

(a), (b), (c) of Theorem 1. (a’) and (a) are the same, and (b’) clearly implies (b). To

prove (c), let z, y be adjacent, z ∈ Z, y ∈ Yn, and let X(A,b) ∩ Rn
z ∩ Rn

y 6= ∅. Then

there exists a j such that zk = yk for each k 6= j and zj = −yj , and there exists an

x ∈ X(A,b) ∩ Rn
z ∩ Rn

y which clearly satisfies xj = 0, hence, by (b’),

(xz)j ≤ 0 ≤ (xz)j
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and therefore

(xz)j(xz)j ≤ 0,

hence y = z−2zjej ∈ Z by (c’), which proves (c). Thus the assumptions of Theorem 1

are met and we obtain that A is regular and

X(A,b) ⊆
⋃

z∈Z

Rn
z

holds, which in conjunction with assumption (b’) and the definition of Z0 gives

X(A,b) ⊆
⋃

z∈Z

(X(A,b) ∩ Rn
z ) =

⋃

z∈Z0

(X(A,b) ∩ Rn
z ) ⊆

⋃

z∈Z0

[xz , xz ].

ut

Finally, in the third theorem we specify a way how to enclose the sets X(A,b) ∩
Rn

z 6= ∅, z ∈ Z, via solutions of certain nonlinear matrix inequalities. Thus, this theorem

describes a construction of a set Z as well as a construction of orthantwise enclosures.

Theorem 3 Let A = [Ac−∆, Ac +∆] be an n×n interval matrix, b = [bc− δ, bc + δ]

an interval n-vector, and let Z be a subset of Yn having the following properties:

(a”) sgn(x0) ∈ Z for some x0 ∈ X(A,b),

(b”) for each z ∈ Z the inequalities

(QAc − I)Tz ≥ |Q|∆, (3)

(QAc − I)T−z ≥ |Q|∆ (4)

have matrix solutions Qz and Q−z, respectively; denote

xz = Qzbc + |Qz |δ, (5)

xz = Q−zbc − |Q−z |δ, (6)

(c”) if z ∈ Z, xz ≤ xz, and (xz)j(xz)j ≤ 0 for some j, then z − 2zjej ∈ Z.

Then A is regular and

X(A,b) ⊆ [ min
z∈Z1

xz , max
z∈Z1

xz ] (7)

holds, where

Z1 = { z ∈ Z | xz ≤ xz }. (8)

Proof Let z ∈ Z, X(A,b) ∩ Rn
z 6= ∅, and let Qz solve (3), so that it satisfies

Tz ≤ QzAcTz − |Qz |∆. (9)

Then for each x ∈ X(A,b) ∩ Rn
z we have Tzx = |x|, x = Tz |x|, and

|Acx− bc| ≤ ∆|x|+ δ (10)
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by the Oettli-Prager theorem ([6], in the current form in [2]). First postmultiplying (9)

by |x| and later premultiplying (10) by |Qz |, we obtain

x = Tz |x| ≤ QzAcTz |x| − |Qz |∆|x|
= QzAcx− |Qz |∆|x|
= Qz(Acx− bc) + Qzbc − |Qz |∆|x|
≤ |Qz(Acx− bc)|+ Qzbc − |Qz |∆|x|
≤ |Qz ||Acx− bc|+ Qzbc − |Qz |∆|x|
≤ |Qz |(∆|x|+ δ) + Qzbc − |Qz |∆|x|
= Qzbc + |Qz |δ = xz .

Similarly, since T−z = −Tz , the inequality (4) can be written as

Tz ≥ Q−zAcTz + |Q−z |∆,

and we have

x = Tz |x| ≥ Q−zAcTz |x|+ |Q−z |∆|x|
= Q−zAcx + |Q−z |∆|x|
= Q−z(Acx− bc) + Q−zbc + |Q−z |∆|x|
≥ −|Q−z(Acx− bc)|+ Q−zbc + |Q−z |∆|x|
≥ −|Q−z ||Acx− bc|+ Q−zbc + |Q−z |∆|x|
≥ −|Q−z |(∆|x|+ δ) + Q−zbc + |Q−z |∆|x|
= Q−zbc − |Q−z |δ = xz ,

In this way we have proved that

X(A,b) ∩ Rn
z ⊆ [xz , xz ].

Thus the assumptions (a’)-(c’) of Theorem 2 are met and the result follows from it

since

Z0 = { z ∈ Z | X(A,b) ∩ Rn
z 6= ∅ } ⊆ { z ∈ Z | xz ≤ xz } = Z1.

ut

5 A general method

Theorem 3 has been translated into a MATLAB-style code in Fig. 1. The text is self-

explanatory as the same notations are used. If the algorithm terminates successfully in

line (25), then D = Z1. The following result is immediate:

Theorem 4 For each n × n interval matrix A and for each interval n-vector b the

algorithm (Fig. 1) in a finite number of steps either computes an enclosure X of the

solution set of the interval linear system Ax = b, or fails (produces an empty output).
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(01) function X = genmeth (A,b)
(02) % Computes an enclosure X of the solution set
(03) % of Ax = b, or produces an empty output.
(04) if Ac is singular, X = [ ]; return, end

(05) xc = A−1
c bc; z = sgn(xc); x = xc; x = xc;

(06) Z = {z}; D = ∅;
(07) while Z 6= ∅
(08) select z ∈ Z; Z = Z − {z}; D = D ∪ {z};
(09) find a solution Qz of (QAc − I)Tz ≥ |Q|∆;
(10) if Qz not found, X = [ ]; return, end
(11) find a solution Q−z of (QAc − I)T−z ≥ |Q|∆;
(12) if Q−z not found, X = [ ]; return, end
(13) xz = Qzbc + |Qz |δ;
(14) xz = Q−zbc − |Q−z |δ;
(15) if xz ≤ xz

(16) x = min(x, xz); x = max(x, xz);
(17) for j = 1 : n
(18) z′ = z; z′j = −z′j ;
(19) if ((xz)j(xz)j ≤ 0 and z′ /∈ Z ∪D)
(20) Z = Z ∪ {z′};
(21) end
(22) end
(23) end
(24) end
(25) X = [x, x];

Fig. 1 A general method for computing enclosures.

6 The role of Theorem 3

Theorem 3, published here with some delay, has been used in the freely available

verification software package VERSOFT [11] as the main tool behind the function

VERINTERVALHULL.M [8] for computing the interval hull of the solution set of a

system of interval linear equations (see [12]). This function, in turn, is then called by

VERSOFT functions VERREGSING.M [10], VERPOSDEF.M [9], and VERBASINT-

NPPROB.M [7]. All these functions use not-a-priori-exponential algorithms for solving

NP-hard problems. This is due to use of the subset Z1 introduced in (8) instead of the

whole of Yn. This explains that Theorem 3 plays in fact a more important role than

this short paper might suggest.
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