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Abstract

A square matrix A is called diagonally singularizable if jA � Sj � I holds
for some singular matrix S (I is the identity matrix). The paper brings
several necessary and/or su�cient conditions for diagonal singularizability
and demonstrates another speci�c features, namely existence of diagonal-
singularizability-preserving operations and a theorem of symmetric alterna-
tive.
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1. Introduction

In [1], the authors introduced the following concept: a matrix A 2 Rn�n

is called diagonally singularizable if there exists a singular matrix S satisfying

jA� Sj � I;

where I denotes the identity matrix and absolute value and inequality are
understood entrywise. This term was used in [1] for formulating a nontrivial
assertion (see Theorem 5 below): for each nonsingular matrix A, either A
or A�1 is diagonally singularizable. It was just this remarkable property
that prompted this author to investigate the concept of diagonal singular-
izability in more detail, thus giving rise to the present paper which brings
several necessary and/or su�cient conditions for diagonal singularizability
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and demonstrates another speci�c features, namely existence of diagonal-
singularizability-preserving operations and a theorem of symmetric alterna-
tive.

We use the following notation. %(A) stands for the spectral radius of A
and �min(A) denotes the minimum eigenvalue of a symmetric matrix A. Let
us recall that by the Courant-Fischer theorem [2],

�min(A) = min
x 6=0

xTAx

xTx
:

Continuity of the minimum eigenvalue follows from the Wielandt-Ho�man
theorem (see [2]):

j�min(A)� �min(B)j � kA�BkF

holds for any two symmetric matrices A;B 2 Rn�n, where we use the Frobe-
nius matrix norm kCkF = (

P
ij c

2
ij)

1=2. An interval matrix is a set of ma-
trices of the form

[A�D; A+D] = fC j jA� Cj � D g

with D � 0; it is called singular if it contains a singular matrix. For a
t 2 R

n, Tt denotes the diagonal matrix with diagonal vector t. f�1; 1gn

is the set of all �1-vectors in Rn (there are 2n of them). Let us note that
jABj � jAjjBj whenever the matrices A, B can be multiplied.

2. Necessary and su�cient conditions

First, we have several necessary and su�cient conditions for diagonal
singularizability.

Theorem 1. For a matrix A 2 Rn�n, the following assertions are equiva-

lent:

(i) A is diagonally singularizable,

(ii) [A� I; A+ I] is singular,

(iii) jAxj � jxj for some x 6= 0,

(iv) det(A) det(A� Ty) � 0 for some y 2 f�1; 1gn,

(v) A� �Ty is singular for some � 2 [0; 1] and y 2 f�1; 1gn,
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(vi) jAxj = � jxj for some � 2 [0; 1] and x 6= 0.

Proof. Let A 2 Rn�n. We shall prove that i)(ii))(iii))(iv))(v))(vi)
)(i).

(i))(ii): If jA � Sj � I for some singular S, then S 2 [A � I; A + I],
hence [A� I; A+ I] is singular.

(ii))(iii): If [A � I; A + I] contains a singular matrix S, then Sx = 0
for some x 6= 0 which implies that jAxj = j(A� S)xj � jA� Sjjxj � jxj.

(iii))(iv): Let jAxj � jxj for some x 6= 0. Put ti = (Ax)i=xi if xi 6= 0
and ti = 1 otherwise (i = 1; : : : ; n), then ti 2 [�1; 1] and (Ax)i = tixi for
each i which can be written as (A� Tt)x = 0 where t = (ti), implying

det(A� Tt) = 0: (1)

Now de�ne a function f by

f(s) = det(A) det(A� Ts); s 2 Rn: (2)

We shall construct by induction numbers yi 2 f�1; 1g, i = 1; : : : ; n, such
that

f(y1; : : : ; yi; ti+1; : : : ; tn) � 0 (3)

will hold for i = 0; : : : ; n. For i = 0 this follows from (1). Thus assume that
numbers y1; : : : ; yi�1 satisfying

f(y1; : : : ; yi�1; ti; ti+i; : : : ; tn) � 0 (4)

have been already constructed for some i, 1 � i � n. De�ne a function of
one variable

�i(�) = f(y1; : : : ; yi�1; �; ti+1; : : : ; tn)

and construct yi as follows: let yi = �1 if

�i(�1) � �i(1) (5)

and set yi = 1 otherwise. It follows from the Laplace expansion of the
second determinant in (2) along the ith row that �i(�) is linear in �. Thus
if (5) holds, then �i(�) is nondecreasing and because ti 2 [�1; 1] (see the
de�nition of ti above), we have

�i(yi) = �i(�1) � �i(ti) � 0

by the induction assumption (4); if

�i(�1) > �i(1)
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holds, then �i(�) is decreasing and we have

�i(yi) = �i(1) � �i(ti) � 0

so that in both cases (3) holds which concludes the proof by induction. Now
from (3) for i = n we obtain that f(y) � 0 which was to be proved.

(iv))(v): Let det(A) det(A � Ty) � 0 for some y 2 f�1; 1gn. De�ne a
real function g by

g(t) = det(A� tTy); t 2 [0; 1]:

Then g is continuous in [0; 1] and g(0)g(1) = det(A) det(A� Ty) � 0 which
in the light of the intermediate value theorem means that g(�) = 0 for some
� 2 [0; 1], hence A� �Ty is singular.

(v))(vi): If A � �Ty is singular for some � 2 [0; 1] and y 2 f�1; 1gn,
then (A� �Ty)x = 0 for some x 6= 0 which implies jAxj = � jxj.

(vi))(i): Let jAxj = � jxj for some � 2 [0; 1] and x 6= 0. De�ne y; z 2
f�1; 1gn by yi = 1 if (Ax)i � 0 and yi = �1 otherwise, and zi = 1 if
xi � 0 and zi = �1 otherwise (i = 1; : : : ; n), then TyAx = �Tzx implying
(A � �TyTz)x = 0 which shows that the matrix S = A � �TyTz is singular
and satis�es jA� Sj = j�TyTzj � I, hence A is diagonally singularizable.

3. Su�cient conditions

Next we have two su�cient conditions for diagonal singularizability and
its negation.

Theorem 2. If A is nonsingular and

max
j
jA�1jjj � 1

holds, then A is diagonally singularizable.

Proof. Take a k for which jA�1jkk � 1. Then

jA�1ekj = jA�1jek � ek = jekj; (6)

where ek is the kth column of the identity matrix I. Put x = A�1ek, then
x 6= 0 and from (6) we obtain

jAxj � jxj;

which by Theorem 1, (iii) means that A is diagonally singularizable.
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Theorem 3. If A is nonsingular and

%(jA�1j) < 1 (7)

holds, then A is not diagonally singularizable.

Proof. Let us recall that (7) implies (I � jA�1j)�1 � 0 (Horn and John-
son [3]). Assume to the contrary that A is diagonally singularizable, so that
jAxj � jxj for some x 6= 0 (Theorem 1, (iii)). Put x0 = Ax, then x0 6= 0 and
it satis�es jx0j � jA�1x0j which implies

jx0j � jA�1jjx0j;

hence
(I � jA�1j)jx0j � 0;

and premultiplying this inequality by the nonnegative matrix (I � jA�1j)�1

yields jx0j � 0, hence x0 = 0 which contradicts the previously mentioned fact
that x0 6= 0.

4. Operations preserving diagonal singularizability

In this section we show that three well-known matrix operations preserve
diagonal singularizability.

Theorem 4. If a square matrix A is diagonally singularizable, then so are

AT , (ATA)2
k

and (AAT )2
k

for k = 0; 1; 2; : : :.

Proof. (a) If A is diagonally singularizable, then from jA�Sj � I for some
singular S it follows that jAT � ST j � I where ST is again singular, hence
AT is diagonally singularizable.

(b) We shall �rst prove diagonal singularizability of ATA. By Theorem 1,
(iii) a diagonally singularizable A satis�es jAxj � jxj for some x 6= 0. Then
we have

xTATAx = (Ax)T (Ax) � jAxjT jAxj � jxjT jxj = xTx;

hence
xT (ATA� I)x � 0

which in view of symmetry of ATA� I implies that

�min(A
TA� I) = min

x0 6=0

x0T (ATA� I)x0

x0Tx0
�

xT (ATA� I)x

xTx
� 0:
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Now de�ne a real function h by

h(t) = �min(A
TA� tI); t 2 [0; 1]:

It is well de�ned because ATA � tI is symmetric for each t 2 [0; 1], and
the above reasoning implies that h(1) � 0. Next, we have that h(0) =
�min(A

TA) � 0 because ATA is symmetric positive semide�nite, and h is
continuous in [0; 1] since for each t1; t2 2 [0; 1] we have by the Wielandt-
Ho�man theorem that

jh(t1)� h(t2)j � k(t1 � t2)IkF = n1=2jt1 � t2j:

Hence the intermediate value theorem implies existence of a � 2 [0; 1] such
that h(�) = 0 which gives that �min(A

TA � �I) = 0. Thus ATA � �I is
singular and Theorem 1, (v) (with y = e, the vector of all ones) proves ATA
to be diagonally singularizable.

(c) Next we prove by induction on k that (ATA)2
k

is diagonally singu-
larizable for k = 0; 1; 2; : : :. The case of k = 0 has been proved in part
(b). Thus assume that (ATA)2

k

is diagonally singularizable for some k � 0.

Then, again by part (b), ((ATA)2
k

)T (ATA)2
k

= ((ATA)2
k

)2 = (ATA)2
k+1

is diagonally singularizable which concludes the proof by induction.
(d) If we apply the previous result to AT , we obtain that (AAT )2

k

is
diagonally singularizable for k = 0; 1; 2; : : :.

5. Symmetric alternative

The situation with matrix inverse is di�erent. The following theorem
was proved in [1].

Theorem 5. For each nonsingular matrix A at least one of the matrices A,

A�1 is diagonally singularizable.

We derive two consequences of this result. The minimum/maximum of
two matrices is understood entrywise.

Theorem 6. For each nonsingular matrix A the interval matrix

[minfA;A�1g � I; maxfA;A�1g+ I] (8)

is singular.
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Proof. By Theorem 5 at least one of the interval matrices [A� I; A+ I],
[A�1 � I; A�1 + I] is singular, therefore (8), the minimal (w.r.t. inclusion)
interval matrix enclosing both these interval matrices, contains a singular
matrix.

Finally, we have this \symmetric alternative".

Theorem 7. For each square matrix A at least one of the inequalities

jAxj � jxj; (9)

jxj � jAxj (10)

has a nontrivial solution.

Proof. If A is singular, then a nontrivial solution to Ax = 0 solves (9). If
A is nonsingular and (9) does not possess a nontrivial solution, then A is not
diagonally singularizable, hence the inverse A�1 is diagonally singularizable
by Theorem 5 so that jA�1x0j � jx0j has a nontrivial solution x0; then
x = A�1x0 is a nontrivial solution to (10).

6. Checking diagonal singularizability

How to check diagonal singularizability? If none of the su�cient con-
ditions of Theorems 2 and 3 works, it seems the best option to check the
interval matrix [A�I; A+I] for singularity. This can be done by MATLAB
program regising.m which is freely available at http://uivtx.cs.cas.cz/

~rohn/other/regising.m. For our purposes it should be invoked by
S=regising(A,eye(size(A))).
If S is nonempty, then S is a singular matrix satisfying jA� Sj � I, i.e., A
is diagonally singularizable; if it is empty, then no such matrix exists and A
is not diagonally singularizable.

For the following randomly generated example both the su�cient condi-
tions fail and we must resort to use of the general algorithm.

>> rand('state',1); A=2*rand(5,5)-1

A =

0.9056 -0.1144 0.7972 0.8205 0.5374

0.4081 0.6736 -0.1420 0.0506 -0.8810

0.9078 0.0374 -0.6009 -0.3863 0.2542

0.1963 -0.9556 -0.3938 -0.9311 -0.4696

0.6815 -0.2482 0.0766 0.4307 -0.3753
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The matrix is nonsingular as shown by

>> rank(A)

ans =

5

Now we use

>> S=regising(A,eye(size(A)))

to obtain

S =

1.0052 -0.1144 0.7972 0.8205 0.5374

0.4081 1.6736 -0.1420 0.0506 -0.8810

0.9078 0.0374 0.3991 -0.3863 0.2542

0.1963 -0.9556 -0.3938 -1.9311 -0.4696

0.6815 -0.2482 0.0766 0.4307 -1.3753

Notice that indeed the o�-diagonal entries of both matrices are the same,
and the diagonal ones have been shifted by an amount of at most 1 each.
We may check singularity of S by computing its rank.

>> rank(S)

ans =

4

Acknowledgment

The author thanks an anonymous referee for helpful suggestions.

References

[1] J. Rohn, S. P. Shary, Interval matrices: Regularity generates singularity,
Linear Algebra and Its Applications 540 (2018) 149{159. doi:10.1016/
j.laa.2017.11.020.

8



[2] G. H. Golub, C. F. van Loan, Matrix Computations, The Johns Hopkins
University Press, Baltimore, 1996.

[3] R. A. Horn, C. R. Johnson, Matrix Analysis, Cambridge University
Press, Cambridge, 1985.

9


