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Abstract

A square matrix A is called diagonally singularizable if |[A — S| < I holds
for some singular matrix S (I is the identity matrix). The paper brings
several necessary and/or sufficient conditions for diagonal singularizability
and demonstrates another specific features, namely existence of diagonal-
singularizability-preserving operations and a theorem of symmetric alterna-
tive.
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1. Introduction

In [1], the authors introduced the following concept: a matrix A € R™*"
is called diagonally singularizable if there exists a singular matrix S satisfying

where I denotes the identity matrix and absolute value and inequality are
understood entrywise. This term was used in [1] for formulating a nontrivial
assertion (see Theorem 5 below): for each nonsingular matrix A, either A
or A-! is diagonally singularizable. It was just this remarkable property
that prompted this author to investigate the concept of diagonal singular-
izability in more detail, thus giving rise to the present paper which brings
several necessary and/or sufficient conditions for diagonal singularizability
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and demonstrates another specific features, namely existence of diagonal-
singularizability-preserving operations and a theorem of symmetric alterna-
tive.

We use the following notation. p(A) stands for the spectral radius of A
and Apin(A) denotes the minimum eigenvalue of a symmetric matrix A. Let
us recall that by the Courant-Fischer theorem [2],

Continuity of the minimum eigenvalue follows from the Wielandt-Hoffman
theorem (see [2]):

P‘min(A) - Amin(B)‘ < ||A - BHF

holds for any two symmetric matrices A, B € R™*" where we use the Frobe-
nius matrix norm ||C||z = (32,; ¢%)"/?. An interval matrix is a set of ma-

trices of the form

ij

[A-D,A+D]={C||A-C| <D}

with D > 0; it is called singular if it contains a singular matrix. For a
t € R, T; denotes the diagonal matrix with diagonal vector ¢. {—1,1}"
is the set of all +1-vectors in R™ (there are 2" of them). Let us note that
|AB| < |A||B| whenever the matrices A, B can be multiplied.

2. Necessary and sufficient conditions

First, we have several necessary and sufficient conditions for diagonal
singularizability.

Theorem 1. For a matriz A € R™ ™ the following assertions are equiva-
lent:

(i) A is diagonally singularizable,
(it) [A—1I, A+ 1] is singular,
(115) |Az| < |z| for some z # 0,
(iv) det(A)det(A —T,) <0 for some y € {—1,1}",

(v) A— 71T, is singular for some 7 € [0,1] and y € {—1,1}",



(vi) |Az| = 7|z| for some T € [0,1] and z # 0.

PRrROOF. Let A € R"*™. We shall prove that i=(ii)=-(iii)=(iv)=-(v)=(vi)
=(i).

(i)=(ii): If |A — S| < I for some singular S, then S € [A —1I, A+ I,
hence [A — I, A+ I] is singular.

(ii)=(iii): If [A — I, A + I] contains a singular matrix S, then Sz = 0
for some z # 0 which implies that |Az| = |(4 — S)z| < |A — S||z| < |z|.

(iii)=(iv): Let |Az| < |z| for some = # 0. Put t; = (Az);/z; if z; # 0
and t; = 1 otherwise (i = 1,...,n), then ¢; € [-1,1] and (Az); = t;z; for
each 7 which can be written as (A — T,)z = 0 where t = (t;), implying

det(A —T;) =0. (1)
Now define a function f by
f(s) =det(A)det(A —-T;), se€R"™ (2)

We shall construct by induction numbers y; € {—1,1}, i = 1,...,n, such
that

f(yla"'ayiati+1a"'atn)SO (3)
will hold for i = 0,...,n. For ¢ = 0 this follows from (1). Thus assume that
numbers y, ..., y;—1 satisfying

Fyis - ¥ictstistiziy -, tn) <0 (4)

have been already constructed for some i, 1 < i < n. Define a function of
one variable

QZSZ(O') = f(yla s 7yi—1707ti+17' . atn)

and construct y; as follows: let y; = —1 if
¢i(—1) < ¢i(1) (5)
and set y; = 1 otherwise. It follows from the Laplace expansion of the

second determinant in (2) along the ith row that ¢;(o) is linear in 0. Thus
if (5) holds, then ¢;(o) is nondecreasing and because t; € [—1,1] (see the
definition of ¢; above), we have

Gi(yi) = ¢i(—1) < ¢i(ti) <0

by the induction assumption (4); if

¢i(—=1) > ¢i(1)



holds, then ¢;(o) is decreasing and we have

Bi(yi) = ¢i(1) < di(t;) <0

so that in both cases (3) holds which concludes the proof by induction. Now
from (3) for ¢ = n we obtain that f(y) <0 which was to be proved.

(iv)=(v): Let det(A)det(A —T,) < 0 for some y € {—1,1}". Define a
real function g by

g(t) = det(A —tT,), te][0,1].

Then g is continuous in [0, 1] and ¢(0)g(1) = det(A) det(4 — T}) < 0 which
in the light of the intermediate value theorem means that g(7) = 0 for some
7 € [0,1], hence A — 7T}, is singular.

(v)=(vi): If A— 7T, is singular for some 7 € [0,1] and y € {—1,1}",
then (A — 77T,)z = 0 for some z # 0 which implies |Az| = 7|z|.

(vi)=(i): Let |Az| = 7|z| for some 7 € [0,1] and z # 0. Define y,z €
{-1,1}" by y; = 1 if (Az); > 0 and y; = —1 otherwise, and z; = 1 if
xz; > 0 and z; = —1 otherwise (i = 1,...,n), then T, Az = 7T,z implying
(A = 7T,T,)x = 0 which shows that the matrix S = A — 7T, T, is singular
and satisfies |[A — S| = |7T,T,| < I, hence A is diagonally singularizable.

3. Sufficient conditions

Next we have two sufficient conditions for diagonal singularizability and
its negation.

Theorem 2. If A is nonsingular and

max |A7.. > 1
] A7) >

holds, then A is diagonally singularizable.
PrOOF. Take a k for which |[A~!|x, > 1. Then
|A ek = |A er, > e = |exl, (6)

where ey, is the kth column of the identity matrix I. Put z = A le, then
z # 0 and from (6) we obtain

| Az| < ||,

which by Theorem 1, (iii) means that A is diagonally singularizable.



Theorem 3. If A is nonsingular and
oA <1 (7)
holds, then A is not diagonally singularizable.

PROOF. Let us recall that (7) implies (I — |A!|)"! > 0 (Horn and John-
son [3]). Assume to the contrary that A is diagonally singularizable, so that
|Az| < |z| for some z # 0 (Theorem 1, (iii)). Put 2’ = Az, then 2’ # 0 and
it satisfies |2'| < |A~'2'| which implies

2’| < [A7 |2,
hence
(I-]A7")='| <0,

and premultiplying this inequality by the nonnegative matrix (I — A1)~}
yields |z'] < 0, hence 2/ = 0 which contradicts the previously mentioned fact
that 2’ # 0.

4. Operations preserving diagonal singularizability

In this section we show that three well-known matrix operations preserve
diagonal singularizability.

Theorem 4. If a square matriz A is diagonally singularizable, then so are

AT (AT 4)?" and (AAT)?" for k=0,1,2,....

PROOF. (a) If A is diagonally singularizable, then from |A— S| < I for some
singular S it follows that |A”7 — S| < I where S7 is again singular, hence
AT is diagonally singularizable.

(b) We shall first prove diagonal singularizability of AT A. By Theorem 1,
(iii) a diagonally singularizable A satisfies |Az| < |z| for some z # 0. Then
we have

el AT Az = (Az)T (Ax) < |Az|T|Az| < |z|V|z| = 2T 2,

hence
eT(ATA - Dz <0

which in view of symmetry of AT A — I implies that

11 1 /! | 1
T .ot (AYA-1) 2t (ATA-Dx
. _ = <
Amin(A7A = 1) 5171&% 2Ty g

<0.



Now define a real function i by
h(t) = Amin(ATA —tI), te0,1].

It is well defined because AT A — tI is symmetric for each ¢ € [0,1], and
the above reasoning implies that h(1) < 0. Next, we have that h(0) =
Amin (AT A) > 0 because AT A is symmetric positive semidefinite, and A is
continuous in [0, 1] since for each ¢1,t2 € [0,1] we have by the Wielandt-
Hoffman theorem that

|h(t1) — h(to)| < ||(t1 — t2)I||p = 02|t — ta.

Hence the intermediate value theorem implies existence of a 7 € [0,1] such
that h(r) = 0 which gives that Amin(ATA — 71) = 0. Thus ATA — 71 is
singular and Theorem 1, (v) (with y = e, the vector of all ones) proves AT A
to be diagonally singularizable.

(c) Next we prove by induction on & that (ATA)Qk is diagonally singu-
larizable for £k = 0,1,2,.... The case of £ = 0 has been proved in part
(b). Thus assume that (A7A)2" is diagonally singularizable for some k > 0.
Then, again by part (b), ((ATA4)2)T (AT 4)2" = (AT A)2")2 = (AT 4)2"""
is diagonally singularizable which concludes the proof by induction.

(d) If we apply the previous result to AT, we obtain that (4AT)2" is
diagonally singularizable for £ =0,1,2,....

5. Symmetric alternative

The situation with matrix inverse is different. The following theorem
was proved in [1].

Theorem 5. For each nonsingular matriz A at least one of the matrices A,
A~V is diagonally singularizable.

We derive two consequences of this result. The minimum/maximum of
two matrices is understood entrywise.

Theorem 6. For each nonsingular matriz A the interval matriz
[min{A4, A™"} — I, max{A4, A™'} + 1] (8)

1s singular.



PROOF. By Theorem 5 at least one of the interval matrices [A — I, A + I],
[A=! — I, A=! + I] is singular, therefore (8), the minimal (w.r.t. inclusion)
interval matrix enclosing both these interval matrices, contains a singular
matrix.

Finally, we have this “symmetric alternative”.

Theorem 7. For each square matriz A at least one of the inequalities

Az < Jal, (9)
5] < Az (10)

has a nontrivial solution.

PROOF. If A is singular, then a nontrivial solution to Az = 0 solves (9). If
A is nonsingular and (9) does not possess a nontrivial solution, then A is not
diagonally singularizable, hence the inverse A~! is diagonally singularizable
by Theorem 5 so that |A 'z'| < |2'| has a nontrivial solution z'; then
r = A~ is a nontrivial solution to (10).

6. Checking diagonal singularizability

How to check diagonal singularizability? If none of the sufficient con-
ditions of Theorems 2 and 3 works, it seems the best option to check the
interval matrix [A— I, A+ I] for singularity. This can be done by MATLAB
program regising.m which is freely available at http://uivtx.cs.cas.cz/
~rohn/other/regising.m. For our purposes it should be invoked by
S=regising(A,eye(size(4))).

If S is nonempty, then S is a singular matrix satisfying |4 — S| <1, i.e., 4
is diagonally singularizable; if it is empty, then no such matrix exists and A
is not diagonally singularizable.

For the following randomly generated example both the sufficient condi-
tions fail and we must resort to use of the general algorithm.

>> rand(’state’,1); A=2*rand(5,5)-1
A =

0.9056 -0.1144 0.7972 0.8205 0.5374
0.4081 0.6736 -0.1420 0.0506 -0.8810
0.9078 0.0374 -0.60092 -0.3863 0.2542
0.1963 -0.9556 -0.3938 -0.9311 -0.4696
0.6815  -0.2482 0.0766 0.4307 -0.3753



The matrix is nonsingular as shown by

>> rank(A)

Now we use
>> S=regising(A,eye(size(4)))
to obtain

S =

1.0052 -0.1144 0.7972 0.8205 0.5374
0.4081 1.6736 -0.1420 0.0506 -0.8810
0.9078 0.0374 0.3991 -0.3863 0.2542
0.1963 -0.9556 -0.3938 -1.9311 -0.4696
0.6815  -0.2482 0.0766 0.4307 -1.3753

Notice that indeed the off-diagonal entries of both matrices are the same,
and the diagonal ones have been shifted by an amount of at most 1 each.
We may check singularity of S by computing its rank.

>> rank(S)
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