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Abstract

We give a theoretical characterization of enclosures of the solution set of
interval linear equations formulated in terms of components of the solution
set of the “dual” Oettli-Prager inequality.
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1 Introduction and Notation

Seemingly, anyone interested in interval linear equations knows the inequality

|Acx− bc| ≤ ∆|x|+ δ;

this is the Oettli-Prager inequality [2] describing the solution set of a system of interval
linear equations Ax = b with A = [Ac−∆, Ac + ∆] ∈ IRn×n and b = [bc− δ, bc + δ] ∈
IRn. Very little, if anything at all, is known, however, of its “dual” inequality

|Acx− bc| ≥ ∆|x|+ δ.

In this note we show that these two inequalities are interrelated in a peculiar way.
If A is regular and δ > 0, then the solution set of the first inequality is connected
whereas that one of the second inequality consists of exactly 2n components (nonempty
connected subsets maximal with respect to inclusion), and an interval vector encloses
the solution set of the first inequality if and only if it intersects all the 2n components
of the solution set of the second inequality. It is just this result that we call the
“theoretical characterization of enclosures”. The proof employs two nontrivial results
from [3], [4], of which particularly the second one is little known.

Notation used: Y = {−1, 1}n is the set of all ±1-vectors in Rn, and Ty denotes
the diagonal matrix with diagonal vector y (used for y ∈ Y only). The sign vector
z = sgn(x) of a vector x ∈ Rn is defined by zi = 1 if xi ≥ 0 and zi = −1 otherwise
(i = 1, . . . , n).
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2 The Result and its Consequences

Denote
X(A, b) = {x | |Acx− bc| ≤ ∆|x|+ δ }

and
Xd(A, b) = {x | |Acx− bc| ≥ ∆|x|+ δ }.

Then we have the following main result.

Theorem 2.1. Let A be regular and let δ > 0. Then an interval vector [x, x] is an
enclosure of X(A, b) if and only if it intersects all components of Xd(A, b).

Proof: The proof proceeds in three steps.
(a) For each y ∈ Y define a set Xy by

Xy = {x | TyAcx−∆t ≥ Tybc + δ, −t ≤ x ≤ t for some t ∈ Rn }. (1)

The set described by the right-hand side system of linear inequalities is a convex
polyhedron, therefore Xy, as its projection onto the x-subspace, is again a convex
polyhedron. Next we prove that Xy ⊆Xd(A, b). Let x ∈ Xy, then it satisfies

Ty(Acx− bc) ≥ ∆t+ δ, t ≥ |x|, (2)

hence
Ty(Acx− bc) ≥ ∆|x|+ δ (3)

which by virtue of nonnegativity of the right-hand side implies that Ty(Acx− bc) ≥ 0,
thus Ty(Acx− bc) = |Acx− bc|, and (3) turns into

|Acx− bc| ≥ ∆|x|+ δ (4)

which means that x ∈Xd(A, b). Thus,
⋃

y∈Y Xy ⊆Xd(A, b). To prove the converse
inclusion, take x ∈Xd(A, b). Then it satisfies (4), thus also (3) for y = sgn(Acx−bc),
and taking t = |x|, we see that it also satisfies (2), so that x ∈ Xy. In this way we
have proved that

Xd(A, b) =
⋃
y∈Y

Xy. (5)

Finally we prove that all the Xy’s are mutually disjoint. Suppose it is not so, so that
x ∈ Xy ∩Xy′ for some y 6= y′, where yi = 1 and y′i = −1 for some i. Then from (3)
we obtain both (Acx− bc)i ≥ 0 and −(Acx− bc)i ≥ 0, hence (Acx− bc)i = 0 implying
(∆|x|+ δ)i = 0 which is a contradiction because δ > 0 by assumption. Hence, (5) is a
decomposition of Xd(A, b) into a union of mutually disjoint convex (i.e., connected)
polyhedra which, in turn, means that each Xy is a component of Xd(A, b) (we shall
see later that all the Xy’s are nonempty, so that there are exactly 2n of them).

(b) Next we prove that if [x, x] is an enclosure of X(A, b), then it intersects all
the components Xy, y ∈ Y . To see this, take an arbitrary y ∈ Y and consider the
absolute value equation

Acx− Ty∆|x| = bc + Tyδ. (6)

Since A is regular by assumption, by Theorem 2.2 in [3] the equation (6) has exactly
one solution xy which belongs to X(A, b) and thus also to [x, x]. Rearranging the
equation (6) to the form

Ty(Acx− bc) = ∆|x|+ δ,
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we can see that xy satisfies (3) and (2), hence xy ∈ Xy. Thus xy ∈ [x, x]∩Xy for each
y ∈ Y , so that [x, x] intersects all the components of Xd(A, b).

(c) Finally we shall prove that if [x, x] ∩Xy 6= ∅ for each y ∈ Y , then X(A, b) ⊆
[x, x]. Take x̃y ∈ [x, x] ∩ Xy for each y ∈ Y and let x ∈ X(A, b). To prove that
x ∈ [x, x], we proceed as follows. Since x ∈ X(A, b), by definition of X(A, b) there
exist A ∈ A, b ∈ b such that Ax = b. Now we have

|Ty(Ax̃y − b)− Ty(Acx̃y − bc)| = |(A−Ac)x̃y + (bc − b)| ≤ ∆|x̃y|+ δ,

hence

Ty(Ax̃y − b) ≥ Ty(Acx̃y − bc)−∆|x̃y| − δ ≥ 0,

the nonnegativity being a consequence of (3) because x̃y ∈ Xy. Thus we have proved
that

Ty(Ax̃y − b) ≥ 0,

which can be rewritten as

T−yAx̃y ≤ T−yb,

for each y ∈ Y . Now Theorem 2 in [4] tells us that this property implies existence of
an x∗ such that Ax∗ = b, and x∗ belongs to the convex hull of the points x̃y, y ∈ Y .
Since each x̃y, y ∈ Y , belongs to the convex set [x, x], its convex hull is a part of [x, x],
hence x∗ ∈ [x, x]. But since Ax∗ = b and Ax = b and A is nonsingular, it must be
x∗ = x, hence x ∈ [x, x]. In this way we finally have that X(A, b) ⊆ [x, x], which was
to be proved.

We have proved that

Xd(A, b) =
⋃
y∈Y

Xy,

where

Xy = {x | TyAcx−∆t ≥ Tybc + δ, −t ≤ x ≤ t for some t } (7)

= {x | Ty(Acx− bc) ≥ ∆|x|+ δ }. (8)

In the proof we have used the former description to demonstrate that Xy is a con-
vex polyhedron; now we shall employ the latter to show that under mild additional
assumption this polyhedron is unbounded for each y ∈ Y .

Theorem 2.2. If, additionally, ∆ 6= 0, then all the components Xy, y ∈ Y , are
unbounded.

Proof: Let y ∈ Y . According to Theorem 5.1, (B4) in [3], regularity of A implies
existence of a positive vector ry satisfying

|A−1
c Ty∆ry| < ry.

Then, with xy being the unique solution of (6), for each λ ≥ 0 we have

Ty(Ac(xy + λA−1
c Ty∆ry)− bc) = ∆|xy|+ δ + λ∆ry

= ∆(|xy|+ λry) + δ

≥ ∆(|xy|+ λ|A−1
c Ty∆ry|) + δ

≥ ∆|xy + λA−1
c Ty∆ry|+ δ
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which in the light of (8) shows that xy + λA−1
c Ty∆ry ∈ Xy for each λ ≥ 0 and since

A−1
c Ty∆ry 6= 0 because of ∆ 6= 0 and ry > 0, this means that the whole half-ray

{xy + λA−1
c Ty∆ry | λ ≥ 0 }

belongs to Xy which is thereby unbounded.
In a special case of ∆ = 0 we have from (8) that

Xy = {x | Ty(Acx− bc) ≥ δ }.

If we write Ty(Acx− bc) = δ + h, where h ≥ 0, then x = A−1
c (bc + Tyδ) + A−1

c Tyh =
xy +A−1

c Tyh, where xy is the solution to (6). In this way we obtain the description

Xy = {xy +A−1
c Tyh | h ≥ 0 }

which shows that in this case Xy is a closed convex cone emanating from the point xy.
Next we shall show that enclosures can also be characterized without resorting to

the notion of component.

Theorem 2.3. Let A be regular and δ > 0. Then an interval vector x is an enclosure
of X(A, b) if and only if for each y ∈ Y it contains a vector x̃y satisfying

Ty(Acx̃y − bc) ≥ ∆|x̃y|+ δ. (9)

Proof: If an interval vector x is an enclosure of X(A, b), then for each y ∈ Y
the unique solution xy of (6) belongs to x and satisfies (9). Conversely, if an interval
vector x for each y ∈ Y contains a solution x̃y of (9), then x intersects all components
of X(A, b) and thus is an enclosure of it by Theorem 2.1.

Finally we show how an enclosure can be constructed directly from solutions of (9).

Theorem 2.4. Let A be regular and δ > 0. If for each y ∈ Y the inequality (9) has
a solution x̃y, then

x = [min
y∈Y

x̃y,max
y∈Y

x̃y] (10)

(entrywise minimum/maximum) is an enclosure of X(A, b).

Proof: Obviously, x̃y ∈ x for each y ∈ Y , hence x is an enclosure by Theo-
rem 2.3.

Theorem 2.4 in [3] shows that if for each y ∈ Y the inequality (9) holds as equation,
then x given by (10) is the interval hull of X(A, b).

3 Example

Consider the example by Hansen [1](
[2, 3] [0, 1]
[1, 2] [2, 3]

)
x =

(
[ 0, 120]
[60, 240]

)
. (11)

In Fig. 1 the solution set X(A, b) is depicted in green and the four unbounded
components of Xd(A, b) in red. The components touch the solution set just in the
points xy (solutions of (6)). Observe that, indeed, an interval vector encloses the
solution set if and only if it intersects all four components.

The picture was made with the help of the software package Intlininc2d by I. A.
Sharaya [6], [5].
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Figure 1: Example (11), sets X(A, b) (in green) and Xd(A, b) (in red).

4 Conclusion

The main result remains highly theoretical because in practice we will hardly ever be
able to check that an interval vector intersects 2n sets. But it is of certain interest
because of its three features: first, that such a characterization exists at all; second, due
to a special way in which inequalities |Acx−bc| ≤ ∆|x|+δ and |Acx−bc| ≥ ∆|x|+δ are
interrelated; and third, due to the sole fact that the solution set of |Acx−bc| ≥ ∆|x|+δ
has exactly 2n components that are explicitly described by (7), (8).
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