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The following theorem is proved: given square matrices A, D of the same size, D nonnegative, then either the
equation AxþB|x|¼ b has a unique solution for each B with |B|�D and for each b, or the equation
AxþB0|x|¼ 0 has a nontrivial solution for some matrix B0 of a very special form, |B0|�D; the two alterna-
tives exclude each other. Some consequences of this result are drawn. In particular, we define a � to be
an absolute eigenvalue of A if |Ax|¼�|x| for some x 6¼ 0, and we prove that each square real matrix has
an absolute eigenvalue.
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1 INTRODUCTION

Theorems of the alternatives are assertions stating that for each instance of the data,
exactly one of the two (or, sometimes, more) alternatives (i), (ii) holds. They are not
much frequent because the assertion can always be reformulated in a more usual
form saying that (i) holds if and only if (ii) does not hold; but a formulation using alter-
natives may help to reveal some kind of formal similarity between the two assertions.

As a typical, and nontrivial, example, consider Farkas lemma [1] which says that a
system

Ax ¼ b ð1Þ

(with a general matrix A 2 R
m�n) has a nonnegative solution if and only if each p 2 R

m

with ATp� 0 satisfies bTp� 0. It can be (and often is) stated in the form of a theorem of
the alternatives: for each A 2 R

m�n and each b 2 R
m, exactly one of the two alternatives

holds: (i) the system (1) has a nonnegative solution, and (ii) the system ATp� 0, bTp<0
has a solution. In this version, the common feature is revealed: both assertions concern
solvability of system of linear equations or inequalities.
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As the main result of this article we present a theorem of the alternatives for a non-
linear equation of the type

Axþ Bjxj ¼ b: ð2Þ

The theorem says that given two matrices A, D 2 R
n�n, D� 0, then exactly one of the

two alternatives holds: (i) the Eq. (2) has a unique solution for each B with |B|�D and
for each b 2 R

n, and (ii) the equation AxþB0|x|¼ 0 has a nontrivial solution for some
B0 of the form B0¼ � diag(y)D, where � 2 ½0, 1� and y is a � 1-vector (so that |B0|�D).
Here and in the sequel, we use the following notations: for a matrix B¼ (bij) the abso-
lute value is defined by |B|¼ (|bij|), similarly for vectors; matrix or vector inequalities
are understood componentwise; y 2 R

n is called a �1-vector if yj 2 f�1, 1g for
j¼ 1, . . . , n; and

diagðyÞ ¼

y1 0 . . . 0
0 y2 . . . 0

..

. ..
. . .

. ..
.

0 0 . . . yn

0
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Hence, unlike most theorems of the alternatives, the result concerns nonlinear systems.
The proof of the main theorem, given in Section 2, is not long, but it relies on three

nontrivial results published in [2,5,6], the last two of them concerning regularity or sin-
gularity of interval matrices. These two notions are the main tools used behind the
scene in the proof, although not explicitly mentioned in formulation of the theorem.

In Section 3 we show that the alternative (ii) of the main theorem can be reformulated
in two equivalent ways. As a consequence of it, we present a sufficient condition for an
Eq. (2) with given A and B (i.e., no matrix D prescribed here) to have a unique solution
for each b 2 R

n. In the next theorem we show that for given rational data A and D,
the problem of determining which one of the alternatives (i), (ii) holds is NP-hard.
A brief account of absolute eigenvalues, an offspring of the above results, concludes
the article.

Finally, a few words should be said about why to study equations of the form (2).
First, if AþB is nonsingular, then, as shown in the proof of the main result, the
Eq. (2) can be rewritten in the equivalent form

xþ ¼ ðAþ BÞ�1
ðA� BÞx� þ ðAþ BÞ�1b,

where xþ¼ (|x|þ x)/2 and x�¼ (|x|� x)/2, which is a linear complementarity problem
[2]. Hence, (2) offers another way of formulating linear complementarity problems.
Second, equations of type (2) arise quite naturally in solving systems of interval
linear equations [5], and in fact this is the field where the inspiration for this article
came from.

2 THEOREM OF THE ALTERNATIVES

The following theorem is the main result of this article:
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THEOREM 1 Let A,D 2 R
n�n, D� 0. Then exactly one of the following alternatives

holds:

(i) for each B 2 R
n�n with |B|�D and for each b 2 R

n the equation

Axþ Bjxj ¼ b ð3Þ

has a unique solution,
(ii) there exist � 2 ½0, 1� and a �1-vector y such that the equation

Axþ �diagðyÞDjxj ¼ 0 ð4Þ

has a nontrivial solution.

Proof Given A, D 2 R
n�n, D� 0, consider the set

A ¼ fA0; jA0 � Aj � Dg ¼ fA0;A�D � A0 � AþDg,

which is called an interval matrix [5]. A is said to be regular if each A0 2 A is nonsingu-
lar, and it is called singular otherwise (i.e., if it contains a singular matrix). We shall
prove that (a) regularity of A implies (i), (b) singularity of A implies (ii), and (c) both
(i) and (ii) cannot hold simultaneously. This will prove that exactly one of the alterna-
tives (i), (ii) holds.

(a) Let A be regular and let |B|�D and b 2 R
n. Then using the nonnegative vectors

xþ¼ (|x|þ x)/2 and x�¼ (|x|� x)/2, we have that x¼ xþ� x� and |x|¼ xþþ x�,
and we may rewrite the Eq. (3) into the equivalent form

xþ ¼ ðAþ BÞ�1
ðA� BÞx� þ ðAþ BÞ�1b: ð5Þ

Since |B|�D, both matrices AþB and A�B belong to A, hence (AþB)�1 exists
and, moreover, (AþB)�1(A�B) is a P-matrix by Theorem 1.2 in [5]. Hence the
linear complementarity problem (5) has a unique solution [2], and the equivalent
Eq. (3) has a unique solution as well.

(b) Let A be singular. Then the value

� ¼ minf" � 0; the interval matrix ½A� "D,Aþ "D� is singularg

belongs to [0, 1] because A¼ [A�D, AþD] is singular, and Theorem 2.2 in [6]
asserts that there exist �1-vectors y, z and an x 6¼ 0 such that

ðA� �diagðyÞD diagðzÞÞx ¼ 0, ð6Þ

diagðzÞx � 0 ð7Þ
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hold. Then (7) implies that diag(z)x¼ |x|, and substituting this quantity into (6) we
obtain

Ax� � diagðyÞDjxj ¼ 0,

so that it suffices to put y :¼�y to conclude that the Eq. (4) has a nontrivial
solution.

(c) Finally we show that (i) and (ii) cannot hold simultaneously. For, if (4) has a non-
trivial solution x for some � 2 ½0, 1� and some �1-vector y, and if we put B¼

� diag(y)D, then |B|¼ �D�D, hence (4) is of the form (3) for some B, but (4)
has at least two solutions x and 0, which contradicts (i). g

We add some comments on and some consequences of this result in the next section.

3 CONSEQUENCES

First we shall show that the assertion (ii) of Theorem 1 (identical with (�) below) can be
recast in two equivalent ways:

THEOREM 2 For A, D 2 R
n�n, D� 0, the following assertions are equivalent:

(�) there exist � 2 ½0, 1� and a �1-vector y such that the equation

Axþ �diagðyÞDjxj ¼ 0 ð8Þ

has a nontrivial solution,
(�) there holds

jAxj ¼ �Djxj ð9Þ

for some � 2 ½0, 1� and x 6¼ 0,
(�) the inequality

jAxj � Djxj ð10Þ

has a nontrivial solution.

Proof We prove ð�Þ ) ð�Þ ) ð�Þ ) ð�Þ. ð�Þ ) ð�Þ: If (�) holds, then, since |diag(y)|¼
I, we have

jAxj ¼ j�� diagðyÞDjxjj ¼ �Djxj,

where � 2 ½0, 1� and x 6¼ 0, which is (�). ð�Þ ) ð�Þ: since � 2 ½0, 1�, we obtain directly
|Ax|�D|x|, which is (�). ð�Þ ) ð�Þ: if (10) holds for some x 6¼ 0, then the interval
matrix [A�D, AþD] is singular by Lemma 2.1 in [6], and from the part (b) of the
proof of Theorem 1 it follows that (ii) holds, which gives (�). g

Putting together the results of Theorems 1 and 2, we obtain this existence and unique-
ness theorem for a single equation AxþB|x|¼ b:

THEOREM 3 Let A,B 2 R
n�n and let the inequality

jAxj � jBjjxj
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have the trivial solution only. Then the equation

Axþ Bjxj ¼ b

has a unique solution for each b 2 R
n.

Proof Put D¼ |B|. Then the assertion (�) of Theorem 2 does not hold, hence neither
does (�), which is the assertion (ii) of Theorem 1. Hence (i) holds, which gives that the
equation AxþC|x|¼ b has a unique solution for each b 2 R

n and each C satisfying
|C|�D¼ |B|, thus in particular also for C¼B. g

Finally we show that the problem of deciding which one of the two alternatives (i),
(ii) of Theorem 1 holds is NP-hard:

THEOREM 4 The problem of checking whether the assertion (i) of Theorem 1 holds is
NP-hard for rational square matrices A, D with D� 0.

Proof We have seen in the proof of Theorem 1, parts (a) and (b), that regularity of the
interval matrix A¼ [A�D, AþD] implies (i), whereas its singularity implies (ii). Hence
A is regular if and only if (i) holds. Since the problem of checking regularity of interval
matrices is NP-hard [4], the same is true for checking validity of (i) as well. g

At the end of the article we shall briefly mention another interesting algebraic pro-
perty which follows from our previous results. Given a square matrix A, let us call a
� an absolute eigenvalue of A if it satisfies

jAxj ¼ �jxj

for some x 6¼ 0. It follows from the definition that an absolute eigenvalue of A is always
nonnegative. It is well known that real matrices may have no real eigenvalues. The fol-
lowing rather surprising result shows that absolute eigenvalues always exist:

THEOREM 5 Each square real matrix has an absolute eigenvalue.

Proof Take an arbitrary vector x>0 and let

" ¼ max
i

jAxji
xi

:

Then we have |Ax|� "x¼ "|x|, which is the inequality (10) for D¼ "I. Hence, by the
equivalence ð�Þ , ð�Þ of Theorem 2, we have that there holds

jAxj ¼ �Djxj ¼ �"jxj

for some x 6¼ 0, which shows that �" is an absolute eigenvalue of A. g

If � is a real eigenvalue of A, then |�| is an absolute eigenvalue of A because Ax¼ �x
implies |Ax|¼ |�||x|. In particular, if A� 0, then the spectral radius %(A) is an absolute
eigenvalue of A [3], hence %(A) is an absolute eigenvalue of A. Absolute eigenvalues
are likely to deserve further study; but we shall not follow this line here.
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