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Abstract:

Described is a not-a-priori-exponential algorithm which in a finite number of steps either finds a
nontrivial solution of the inequality |Az| < |B||x|, or states that no such solution exists.
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2Above: logo of interval computations and related areas (depiction of the solution set of the system
2, 4]z1 + [-2,1]z2 = [-2,2], [-1,2]z1 + [2,4]z2 = [-2,2] (Barth and Nuding [1])).



1 Introduction
We are interested here in finding a nontrivial solution of the inequality
|Az| < |B||x| (1.1)

where A, B € R™"™ and both the inequality as well as the absolute value are understood
entrywise. As evidenced in the software package VERSOFT [4], this inequality, called an
absolute value inequality, has numerous applications due to the following fundamental result:

Proposition 1. A wvector x # 0 solves (1.1) if and only if it is a null vector of some
singular matriz S satisfying

1S — A < |B. (1.2)

Thus, for instance, an interval matrix [A. — A, A.+ A] is singular if and only if the inequality
|Acz| < Alz| has a nontrivial solution. Since the problem of checking singularity of interval
matrices is NP-complete [2], it follows that the problem of checking existence of a nontrivial
solution of (I.1)) is NP-complete as well.

In this report we bring a rather complicated algorithm for finding a nontrivial solution
of (L.1), which has two basic advantages. First, it is not-a-priori-exponential; in fact, it is
capable of solving even problems with large matrices in acceptable time, depending on the
data structure. Second, in infinite precision arithmetic it always produces full answer: it
either finds a nontrivial solution to (I.1)), or it proves that no such solution exists.

The algorithm is presented in self-contained form (i.e., with all its subalgorithms) in
Section 3% In Section 2 we give its overall description and we prove a finite termination
theorem.

2 Description

Full description of the algorithm appears in Section 3 (Figs. 3.1 through 3.4). In fact, it is
a hierarchy of algorithms working in this way:

absvalineq calls singreg,

singreg calls intervalhull,

intervalhull calls gzmatrix and absvaleqn.

The algorithm singreg is described in [(], intervalhull and gzmatrix in [5], and absvalegn
in [3], [7]. Hence we are left with explanation of the behavior of the main algorithm absval-
ineq (Fig. 3.1)).

Theorem 2. For any pair of matrices A, B € R"*" the algorithm absvalineq (Fig. [7.1)
n a finite, but not-a-priori-exponential number of steps either finds a nontrivial solution of
the inequality |Az| < |Bl|z| (the case of x # []), or states that no such solution exists (the
case of x =[]).

3Tt is placed at the rear of the paper in order not to be intertwined with the text.



Proof. As it can be seen from Fig. 3.1, line (04), the function absvalineq applies the
subfunction singreg to the interval matrix [A — |B|, A + | B|]. According to the main result
n [0], this subfunction in a finite, but not-a-priori-exponential number of steps either finds
a singular matrix S satisfying (1.2)) (the case of S # []), or proves that no such matrix exists
(the case of S = []). The rest follows from Proposition [I. O

Example. Consider an example with two 500 x 500 matrices (computation has been
performed on a relatively slow netbook):

>> tic, n=500; rand(’state’,1); A=2*rand(n,n)-1; B=2*rand(n,n)-1;
>> x=absvalineq(A,B); toc

Elapsed time is 16.832303 seconds.

>> isempty(x)
ans =
0

Nonemptiness of x (which is too long to be displayed here) indicates that a solution has been
found.

>> min(abs (B) *abs (x)-abs (A*x))
ans =
8.0415

Positiveness of this number confirms that the vector | B||xz| —|Az| is indeed nonnegative (even
positive).

3 Algorithm

(01)  function = = absvalineq (4, B)

(02) % z # []: x solves |Az| < |B||z|, z # 0.

(03) % x=1[]: |Az| < |Bl||z|, x # 0 has no solution.
(04) S = singree ([ |B, A+ |B]);

(05) if S #[]

(06) find an x # 0 satisfying Sz = 0;

(07) else

(08) z = [];

(09) end

Figure 3.1: An algorithm for solving an absolute value inequality.



(01) function S = singreg (A)

(02) % S #[]: S is a singular matrix in A.

(03) % S =[] no singular matrix in A exists.
(04) S =][];n=size(A,1);e=(1,...,)T € R
(05) if A, is singular, S = A.; return, end

(06) R=A"; D=A|R|;

(07) if Dkk = max; Djj > 1

(08) T = Re;

(09) fori=1:n

(10) if (Alz])i > 0, yi = (Ac2)i/(Alz]); else y; = 1; end
(11) ifz; >0, z; =1; else z; = —1; end
(12) end

(13) S =A.—-T,AT,; return

(14) end

(15) if (D) < 1, return, end

(16) b=ce;

(17) 2= Rb; 5 = min |z

(18) fori=1:n

(19) forj=1:n

(20) ' =x— ijR.j;

(21) if miny, |2} | > v, v = ming, |2} |; © = 2’; bj = —b;; end
(22) end

(23) end

(24)  [x,S] = intervalhull (A, [b, b));

Figure 3.2: An algorithm for finding a singular matrix in an interval matrix.



(01) function [x,S] = intervalhull (A, b)
(02) % Computes either the interval hull x
(03) % of the solution set of Ax = b,

(04) % or a singular matrix S € A.

(05)  x=[]; §=1[];

(06) if A, is singular, S = A.; return, end
(07)  w.=Atb,; 2z =sgn(z.); o = 26 T = 25
(08) Z={:} D=0

(09) while Z # 0

(10) select z € Z; Z =7 —{z}; D=DU{z};
(11) [Q:, S] = qzmatrix (A, 2);

(12) if S # [], x = []; return, end

(13) [Q—., S] = gzmatrix (A, —z);

(14) if S # [], x = []; return, end

(16) z, = Q-zb. — |Q—.[0;

(17) ifz, <7,

(18) z =min(z,z,); T = max(T, 7,);
(19) forj=1:n

(20) 2=z 2y =2

(21) if ((z,);(7.); <0and 2 ¢ ZU D)
(22) Z=ZU{};

(23) end

(24) end

(25) end

(26) end

(27)  x=[z,7;

(01) function [Q)., S] = gzmatrix (A, z)
(02) % Computes either a solution @,

(03) % of the equation QA. — |Q|AT, =1,
(04) % or a singular matrix S € A.

(05) fori=1:n

(06) [z, 5] = absvaleqn (AL, —~T,AT ¢;);
(07) if S#[],5=57;,Q, =[]; return
(08) end

(09) (Q2)ie = a’;

(10) end

1) S=1I

Figure 3.3: An algorithm for computing the interval hull.
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) function [z, S] = absvaleqn (4, B, b)

) % Finds either a solution z to Az + Blz| = b, or
) % a singular matrix S satisfying |S — A| < |B|.
) z=[];S=[];i=0;r=0€R™ X =0¢eR"™",
) if A is singular, S = A; return, end

) z=sgn(A'D);

) if A+ BT, is singular, S = A + BT,; return, end
) x=(A+ BT,) b

) C=—(A+ BT, 'B;

) while zjz; < 0 for some j

) =1+ 1;

) k = min{j | zjz; < 0};

) if 14 22.Ck <0

) S = A+ B(T, + (1/Ci)egef);

) x = []; return

) end

) if ((k <n and r; > maxr;) or (k =n and r, > 0))
) r =1 — Xeok; b

) forj=1:n

) if (|B|Jel); > 0, 55 = (Az);/(|Bllal); else y; = 1; end
) end

) z = sgn(z);

) S:A_Ty‘B|Tz;

) x = []; return

) end

) rE = 1;

) KXok = ;

) 2k = —2k;

) o = 22;/(1 = 22, Cp);

) =2+ arpCok;

) C = C+ alCerCle;

) end

Figure 3.4: An algorithm for solving an absolute value equation.
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