
Optimization Letters manuscript No.
(will be inserted by the editor)

An Algorithm for Computing All Solutions of an Absolute
Value Equation

Jiri Rohn

Received: date / Accepted: date

Abstract Presented is an algorithm which in a finite (but exponential) number of steps

computes all solutions of an absolute value equation Ax + B|x| = b (A, B square), or

fails. Failure has never been observed for randomly generated data. The algorithm can

also be used for computation of all solutions of a linear complementarity problem.

Keywords Absolute value equation · algorithm · all solutions · linear complementarity

problem.

1 Introduction

We consider here the equation

Ax + B|x| = b (1)

(where A, B ∈ Rn×n, b ∈ Rn), called an absolute value equation. This equation was first

introduced in [10] and has been since studied by Mangasarian [2], [3], [4], Mangasarian

and Meyer [5], Prokopyev [9], and Rohn [11], [12]. In all these papers, the authors

are interested in finding some solution of (1); the problem of finding all solutions of

(1) has been left aside so far apparently because of its expectedly high computational

complexity. In fact, problem (1) is NP-hard [2], [3] and checking whether (1) has a

unique or multiple solutions is also NP-hard [9]. Moreover, given some known solution

for (1), it is an NP-hard problem to find other solutions of (1) [9].

In this paper we describe in MATLAB-like style an algorithm named absvaleqnall

(ABSolute VALue EQuatioN, ALL solutions) called by

[X,all]=absvaleqnall(A,B,b)

which in a finite (but exponential) number of steps produces a matrix X whose columns

Supported by the Czech Republic Grant Agency under grants 201/09/1957 and 201/08/J020,
and by the Institutional Research Plan AV0Z10300504.

J. Rohn
Institute of Computer Science, Czech Academy of Sciences, Prague, Czech Republic
E-mail: rohn@cs.cas.cz

J. Rohn
School of Business Administration, Anglo-American University, Prague, Czech Republic

2

are solutions of (1), and a ±1-number all with the following property: if all = 1, then X

contains all solutions of (1); if all = −1, then the columns of X are still solutions of (1),

but it is not guaranteed that all of them have been included. Among several hundred

examples computed, we have never faced the case of all = −1 for randomly generated

data. After formulating the algorithm and proving its properties just mentioned in

Section 3, we present in Section 5 a randomly generated 7 × 7 example having 10

solutions and a pseudorandomly generated 10×10 example having 210 = 1024 solutions.

2 Notations

We use the following notations. Ak• and A•k denote the kth row and the kth column

of A, respectively. Matrix inequalities, as A ≤ B or A < B, are understood compo-

nentwise. The absolute value of a matrix A = (aij) is defined by |A| = (|aij |). The

same notations also apply to vectors that are considered one-column matrices. I is the

identity matrix and e = (1, . . . , 1)T is the vector of all ones. For each z ∈ Rn we denote

Tz = diag (z1, . . . , zn) =




z1 0 . . . 0

0 z2 . . . 0
...

...
. . .

...

0 0 . . . zn


 .

3 The algorithm

The algorithm is described in a MATLAB-style code in Fig. 1. Following we prove its

main property.

Theorem 1 The algorithm (Fig. 1) in a finite number of steps produces a matrix

X whose columns are solutions of the equation (1). If all = 1, then X contains all

solutions of (1).

Proof According to Theorem 2.1 in [1], the subalgorithm consisting solely of lines (04),

(12)-(15), and (24) is finite and constructs all the ±1-vectors z in Rn, with each two

subsequently constructed vectors differing in exactly one entry (because of the updating

in line (15); y is an auxiliary (0, 1)-vector used for finding the k for which zk should be

changed to −zk). Thus, the while loop is finite, which proves finiteness of the whole

algorithm.

Next, in part 2.2 of the proof of Theorem 3.1 in [11] it is proved that after updating

in lines (18), (19), the quantities x and C always satisfy x = (A + BTz)−1b, C =

−(A+BTz)−1B for the current z (invertibility of A+BTz is guaranteed by fulfillment

of the condition in line (16)). This updating is used in order to circumvent the necessity

of solving a large number of systems of linear equations.

A new column x is added to X either in line (08), or in line (20). In both cases we

have x = (A + BTz)−1b (as we have shown in the previous paragraph) and Tzx ≥ 0,

hence Tzx = |x| and b = (A+BTz)x = Ax+BTzx = Ax+B|x|, so that x is a solution

of (1).

Finally, if all = 1, then then the algorithm has constructed all the ±1-vectors z,

and all the matrices of the form A + BTz , z a ±1-vector, have been found nonsingular

3

(01) function [X, all] = absvaleqnall (A, B, b)
(02) X = []; all = 1;
(03) n = length(b);
(04) y = 0 ∈ Rn; z = e ∈ Rn;
(05) if A + BTz is nonsingular
(06) x = (A + BTz)−1b;
(07) C = −(A + BTz)−1B;
(08) if Tzx ≥ 0, X = [X x]; end
(09) else
(10) all = −1; return
(11) end
(12) while y 6= e
(13) k = min{ j | yj = 0 };
(14) for j = 1 : k − 1, yj = 0; end
(15) yk = 1; zk = −zk;
(16) if 1− 2zkCkk 6= 0
(17) α = 2zk/(1− 2zkCkk);
(18) x = x + αxkC•k;
(19) C = C + αC•kCk•;
(20) if Tzx ≥ 0, X = [X x]; end
(21) else
(22) all = −1; return
(23) end
(24) end

Fig. 1 An algorithm for computing all solutions of Ax + B|x| = b.

(lines (05), (16)). Assume x is a solution of (1). Put zi = 1 if xi ≥ 0 and zi = −1

otherwise (i = 1, . . . , n), then z is a ±1-vector satisfying Tzx ≥ 0, so that (A+BTz)x =

A+B|x| = b and x = (A+BTz)−1b, and Tzx ≥ 0. Thus, at the moment the algorithm

constructs this vector z, the condition Tzx ≥ 0 is satisfied and x is added into X (lines

(08) or (20)). This proves that in the case of all = 1 all the solutions of the equation

(1) have been included into X as its columns. ut

We have this immediate consequence of the algorithm construction and of Theo-

rem 1:

Proposition 1 In the output of the algorithm we have all = 1 if and only if A + BTz

is nonsingular for each ±1-vector z.

This result explains why it is almost certain that we get all solutions of (1) for ran-

domly generated data: it is almost impossible to generate randomly singular matrices.

4 Numerical aspects

The algorithm works as shown in infinite precision arithmetic. However, care should be

taken in finite precision arithmetic because frequent updates of x and C may lead to

essential deterioration of their accuracy. As a remedy, we suggest changing line (20) to

(20) if Tzx ≥ 0, x = (A + BTz)−1b; C = −(A + BTz)−1B; X = [X x]; end

i.e., to restart x and C whenever a new column is being added into X.

4

5 Examples

If we generate the data in MATLAB randomly by

>> A=2*rand(n,n)-1; B=2*rand(n,n)-1; b=2*rand(n,1)-1;

(i.e., with entries randomly distributed over (−1, 1)), then, as a rule, about half of

the examples have no solution at all and if solutions exist, their number is usually

relatively small (typically less than n). However, exceptions do exist. The following

randomly generated 7× 7 example has 10 solutions.

>> tic, n=7; rand(’state’,671); A=2*rand(n,n)-1, B=2*rand(n,n)-1,

>> b=2*rand(n,1)-1, [x,all]=absvaleqnall(A,B,b), toc

A =

-0.1479 -0.5985 -0.2265 -0.2292 -0.2426 -0.4978 0.4772

0.3503 0.7914 -0.8554 0.2560 -0.4149 -0.3221 -0.5674

-0.8144 0.8176 -0.9111 -0.9181 0.1953 -0.9376 0.0201

0.1143 -0.8706 -0.1203 0.5198 -0.6242 -0.7633 -0.1536

0.7850 -0.7964 0.6195 -0.5218 0.9041 0.7736 0.9708

-0.4198 -0.5983 0.9180 -0.5057 -0.6677 0.1967 0.0734

-0.1962 0.6255 -0.3860 0.1035 0.4396 -0.7893 -0.9860

B =

-0.8464 -0.5703 -0.9208 -0.0867 0.2831 0.9318 0.8203

-0.7984 0.3861 -0.1074 -0.1288 0.8478 0.8475 0.8466

0.3445 0.4156 0.7606 -0.4585 0.9195 0.0428 0.0485

-0.1394 0.8962 -0.2990 -0.2622 -0.6214 -0.5709 -0.1978

0.8221 0.1798 -0.2713 0.9308 -0.9663 0.9149 -0.0731

0.8508 -0.2720 -0.7906 -0.8783 0.5006 -0.9402 0.6437

0.7253 0.0865 0.5792 -0.1374 -0.0348 0.4932 -0.2036

b =

-0.6525

0.3719

0.6019

-0.3199

0.2327

-0.3168

0.5135

x =

0.2842 -1.9018 0.1484 -0.6615 -4.3204 -1.8897 0.2118

0.2852 -0.3674 0.4041 0.5318 -0.2405 0.4361 0.3700

-0.0841 -0.7374 0.7863 0.5816 -1.2114 -0.3516 0.1697

-0.0106 2.2570 0.1354 0.9473 6.0074 2.5083 0.0233

0.2235 -1.0900 -0.1987 -0.3510 -2.2160 -0.7775 0.2024

0.0125 0.4788 -0.3220 -0.2792 -0.1360 -0.0891 -0.0745

0.0045 0.8552 0.2679 0.6275 2.8807 1.2929 0.0600

0.1584 0.1048 0.2798

0.3711 0.3815 0.2885

0.1642 0.2708 -0.0792

-0.1676 -0.2813 -0.0201

5

0.1049 -0.0257 0.2208

-0.0478 -0.0703 0.0114

-0.0899 -0.1583 -0.0032

all =

1

Elapsed time is 0.118065 seconds.

(Computation has been performed on a not-too-fast netbook.) The following pseudo-

randomly generated 10× 10 example (notice premultiplication by 0.1 in A, taking the

inverse of B, and positivity of b) has 210 = 1024 solutions. We write down neither

the data that can be reconstructed because rand(’state’,1) is used, nor the solution

matrix x which is too large; we output in the variable sols the number of columns of x

only.

>> tic, n=10; rand(’state’,1); A=0.1*(2*rand(n,n)-1); B=rand(n,n);

>> B=inv(B); b=rand(n,1); [x,all]=absvaleqnall(A,B,b);

>> sols=size(x,2), all, toc

sols =

1024

all =

1

Elapsed time is 0.243606 seconds.

6 Computation of all solutions of a linear complementarity problem

A linear complementarity problem

x+ = Mx− + q (2)

can be recast as an absolute value equation

(I + M)x + (I −M)|x| = 2q

and solved as such. In this way, our algorithm can be used for computation of all its

solutions.

The linear complementarity problem (2) is one of the most fundamental problems

in optimization [6]. It is known to be NP-hard [7] and equivalent to mixed integer

feasibility problem [7], [8].

Acknowledgment

The author wishes to thank the referee for helpful comments.

6

References

1. Fiedler, M., Nedoma, J., Ramı́k, J., Rohn, J., Zimmermann, K.: Linear Optimization
Problems with Inexact Data. Springer-Verlag, New York (2006)

2. Mangasarian, O.: Absolute Value Equation Solution via Concave Minimization. Optimiza-
tion Letters 1(1), 3–8 (2007). DOI 10.1007/s11590-006-0005-6

3. Mangasarian, O.: Absolute Value Programming. Computational Optimization and Appli-
cations 36(1), 43–53 (2007)

4. Mangasarian, O.L.: A Generalized Newton Method for Absolute Value Equations. Opti-
mization Letters 3(1), 101–108 (2009). DOI 10.1007/s11590-008-0094-5

5. Mangasarian, O.L., Meyer, R.R.: Absolute Value Equations. Linear Algebra Appl. 419(2–
3), 359–367 (2006). DOI 10.1016/j.laa.2006.05.004

6. Murty, K.G.: Linear Complementarity, Linear and Nonlinear Programming. Heldermann,
Berlin (1988)

7. Pardalos, P.: Linear complementarity problems solvable by integer programming. Opti-
mization 19(4), 467–474 (1988). DOI 10.1080/02331938808843365

8. Pardalos, P.M.: The linear complementarity problem. Gomez, Susana (ed.) et al., Advances
in optimization and numerical analysis. Proceedings of the 6th workshop on optimization
and numerical analysis, Oaxaca, Mexico, January 1992. Dordrecht: Kluwer Academic Pub-
lishers. Math. Appl., Dordr. 275, 39-49 (1994). (1994)

9. Prokopyev, O.: On Equivalent Reformulations for Absolute Value Equations. Comput.
Optim. Appl. 44(3), 363–372 (2009). DOI 10.1007/s10589-007-9158-1

10. Rohn, J.: Systems of linear interval equations. Linear Algebra and Its Applications 126,
39–78 (1989). DOI 10.1016/0024-3795(89)90004-9

11. Rohn, J.: An algorithm for solving the absolute value equa-
tion. Electronic Journal of Linear Algebra 18, 589–599 (2009).
http://www.math.technion.ac.il/iic/ela/ela-articles/articles/vol18 pp589-599.
pdf

12. Rohn, J.: An algorithm for solving the absolute value equation: An improvement. Technical
Report 1063, Institute of Computer Science, Academy of Sciences of the Czech Republic,
Prague (2010). http://uivtx.cs.cas.cz/∼rohn/publist/absvaleqnreport.pdf

