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Bounds on Eigenvalues of Interval Matrices

We describe a rectangle in the complex plane enclosing all eigenvalues of an interval matrix. We give theoretical
bounds (Theorem 1) that are exact for symmetric or skew-symmetric matrices, and practical bounds (Theorem 2)
requiring evaluation of 4 minimal or maximal eigenvalues and 2 spectral radii of symmetric matrices.

1. Theoretical bounds

We consider square interval matrices in the form AI = [Ac − ∆, Ac + ∆] = {A; Ac − ∆ ≤ A ≤ Ac + ∆} where
inequalities are understood componentwise; thus Ac is the center matrix and ∆ is the radius matrix of AI .

T h e o r e m 1. Let AI = [Ac − ∆, Ac + ∆] be a square interval matrix. Then for each eigenvalue λ of each
A ∈ AI we have

r ≤ Re λ ≤ r, (1)

i ≤ Im λ ≤ ı, (2)

where
r = min

‖x‖2=1
(xT Acx− |x|T ∆|x|),

r = max
‖x‖2=1

(xT Acx + |x|T ∆|x|),

i = min
‖(x1,x2)‖2=1

(xT
1 (Ac −AT

c )x2 −∆ ◦ |x1x
T
2 − x2x

T
1 |),

ı = max
‖(x1,x2)‖2=1

(xT
1 (Ac −AT

c )x2 + ∆ ◦ |x1x
T
2 − x2x

T
1 |).

R e m a r k. Vectors are always considered column vectors, so that xT y is the scalar product whereas xyT is
the matrix (xiyj). In the formulae for i and ı, for typographic reasons we write “‖(x1, x2)‖2 = 1” in the subscript
instead of the correct “‖(xT

1 , xT
2 )T ‖2 = 1”. For A = (aij) and B = (bij) we use A ◦B =

∑
ij aijbij (“scalar product

of matrices”) and |A| = (|aij |). Then we have xT Ay =
∑

ij aijxiyj = A ◦ (xyT ).

Proof. Let λ = λ1 + λ2i be an eigenvalue of some A ∈ AI . Then A(x1 + x2i) = (λ1 + λ2i)(x1 + x2i) for
some real vectors x1, x2, x1 6= 0 or x2 6= 0, that may be normalized to achieve xT

1 x1 + xT
2 x2 = 1. Premultiplying

by the complex conjugate vector x1 − x2i, we obtain λ1 + λ2i = (x1 − x2i)T A(x1 + x2i), which yields Re λ = λ1 =
xT

1 Ax1 + xT
2 Ax2 and Im λ = λ2 = xT

1 Ax2 − xT
2 Ax1. 1) To prove that Re λ ≤ r, denote r(A) = max‖x‖2=1 xT Ax,

then we have xT
1 Ax1 ≤ r(A)xT

1 x1 and xT
2 Ax2 ≤ r(A)xT

2 x2, hence xT
1 Ax1 + xT

2 Ax2 ≤ r(A)(xT
1 x1 + xT

2 x2) = r(A) =
max‖x‖2=1 xT Ax = max‖x‖2=1(xT Acx+xT (A−Ac)x) ≤ max‖x‖2=1(xT Acx+ |x|T ∆|x|) = r. Then Re λ ≤ r, which is
the right-hand side inequality in (1). 2) Since −λ is an eigenvalue of −A which belongs to [−Ac−∆,−Ac +∆], from
the result proved in 1) applied to [−Ac−∆,−Ac +∆] we obtain −Re λ = Re (−λ) ≤ max‖x‖2=1(−xT Acx+|x|T ∆|x|),
which implies Re λ ≥ −max‖x‖2=1(−xT Acx + |x|T ∆|x|) = min‖x‖2=1(xT Acx− |x|T ∆|x|) = r, which is the left-hand
side inequality in (1). 3) From xT

1 Ax2 − xT
2 Ax1 = xT

1 (Ac − AT
c )x2 + (A − Ac) ◦ (x1x

T
2 − x2x

T
1 ) ≤ xT

1 (Ac −
AT

c )x2 + ∆ ◦ |x1x
T
2 − x2x

T
1 | we get Im λ ≤ max‖(x1,x2)‖2=1(xT

1 (Ac − AT
c )x2 + ∆ ◦ |x1x

T
2 − x2x

T
1 |) = ı, which is

the right-hand side inequality in (2). 4) Since −λ is an eigenvalue of −A ∈ [−Ac − ∆,−Ac + ∆], applying the
result in 3) we obtain −Im λ = Im (−λ) ≤ max‖(x1,x2)‖2=1(xT

1 (AT
c − Ac)x2 + ∆ ◦ |x1x

T
2 − x2x

T
1 |) and thereby also

Im λ ≥ min‖(x1,x2)‖2=1(xT
1 (Ac −AT

c )x2 −∆ ◦ |x1x
T
2 − x2x

T
1 |) = i, which concludes the proof.

An interval matrix AI is called symmetric if both Ac and ∆ are symmetric, and it is called skew-symmetric if Ac is
skew-symmetric and ∆ is symmetric. The bounds (1) are exact (i.e., achieved over AI) if AI is symmetric and the
bounds (2) are exact if AI is skew-symmetric. The proof of this assertion is omitted here due to space limitations.



2. Practical bounds

T h e o r e m 2. Let AI = [Ac − ∆, Ac + ∆] be a square interval matrix. Then for each eigenvalue λ of each
A ∈ AI we have

λmin(A′c)− %(∆′) ≤ Re λ ≤ λmax(A′c) + %(∆′), (3)

λmin(A′′c )− %(∆′′) ≤ Im λ ≤ λmax(A′′c ) + %(∆′′), (4)

where
A′c = 1

2 (Ac + AT
c ),

∆′ = 1
2 (∆ + ∆T ),

A′′c =

(
0 1

2 (Ac −AT
c )

1
2 (AT

c −Ac) 0

)
,

∆′′ =

(
0 ∆′

∆′ 0

)
.

R e m a r k. λmin, λmax denote the minimal and maximal eigenvalue of a symmetric matrix, respectively, and
% is the spectral radius. Notice that all the matrices A′c, ∆′, A′′c , ∆′′ are symmetric by definition.

Proof. Let λ be an eigenvalue of a matrix A ∈ AI . 1) Since r = max‖x‖2=1(xT Acx + |x|T ∆|x|) ≤
max‖x‖2=1 xT Acx + max‖x‖2=1 |x|T ∆|x| = max‖x‖2=1 xT A′cx + max‖x‖2=1 |x|T ∆′|x| = λmax(A′c) + λmax(∆′) =
λmax(A′c) + %(∆′), by Theorem 1 there holds Re λ ≤ λmax(A′c) + %(∆′), which is the right-hand side inequality
in (3). 2) The proof of the left-hand side inequality is analogous since r ≥ min‖x‖2=1 xT Acx−max‖x‖2=1 |x|T ∆|x| =
λmin(A′c)− %(∆′). 3) We have

ı = max
‖(x1,x2)‖2=1

(xT
1 (Ac −AT

c )x2 + ∆ ◦ |x1x
T
2 − x2x

T
1 |)

≤ max
‖(x1,x2)‖2=1

(xT
1 Acx2 − xT

2 Acx1) + max
‖(x1,x2)‖2=1

(|x1|T ∆|x2|+ |x2|T ∆|x1|)

= max
‖(x1,x2)‖2=1

(
x1

x2

)T (
0 1

2 (Ac −AT
c )

1
2 (AT

c −Ac) 0

) (
x1

x2

)

+ max
‖(x1,x2)‖2=1

( |x1|
|x2|

)T (
0 1

2 (∆ + ∆T )
1
2 (∆ + ∆T ) 0

)( |x1|
|x2|

)

= λmax(A′′c ) + λmax(∆′′) = λmax(A′′c ) + %(∆′′).
Hence Theorem 1 implies Im λ ≤ ı ≤ λmax(A′′c ) + %(∆′′), which is the right-hand side inequality in (4). 4) An
analogous reasoning gives

i ≥ min
‖(x1,x2)‖2=1

(
x1

x2

)T (
0 1

2 (Ac −AT
c )

1
2 (AT

c −Ac) 0

) (
x1

x2

)

− max
‖(x1,x2)‖2=1

( |x1|
|x2|

)T (
0 1

2 (∆ + ∆T )
1
2 (∆ + ∆T ) 0

)( |x1|
|x2|

)

= λmin(A′′c )− %(∆′′),
which in view of Theorem 1 implies the left-hand side inequality in (4).
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