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Abstract. During the recent years, a number of linear problems with interval data
have been proved to be NP–hard. These results may seem rather obscure as regards
the ways in which they were obtained. This survey paper is aimed at demonstrating
that in fact it is not so, since many of these results follow easily from the recently
established fact that for the subordinate matrix norm ‖ · ‖∞,1 it is NP–hard to
decide whether ‖A‖∞,1 ≥ 1 holds, even in the class of symmetric positive definite
rational matrices. After a brief introduction into the basic topics of the complexity
theory in section 1 and formulation of the underlying norm complexity result in
section 2, we present NP–hardness results for checking properties of interval matrices
(section 3), computing enclosures (section 4), solvability of rectangular linear interval
systems (section 5), and linear and quadratic programming (section 6). Due to space
limitations, proofs are mostly only sketched to reveal the unifying role of the norm
complexity result; technical details are omitted.
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1. Complexity

An algorithm is called a polynomial–time algorithm if there exists a
polynomial p such that for each instance (input data) of length ` the
number of steps of the algorithm is ≤ p(`). Length: number of bits of
the input. Consequence: only rational data allowed (usually represented
by pairs of integers). Example: modified Gaussian elimination [1].

Decision (“yes or no”) problems are considered in complexity theory.
A problem belongs to the class P if it is solvable by a polynomial–time
algorithm, and to the class NP if a guessed candidate for a solution can
be verified by a polynomial–time algorithm.

A problem I can be reduced in polynomial time to problem J , which
we denote by I → J , if there exists a polynomial–time algorithm π
which transforms each instance i of I to an instance π(i) of J so that
the answer to i is “yes” if and only if the answer to π(i) is “yes” (or, the
answer to i is “yes” if and only if the answer to π(i) is “no”). Hence, if
I → J , then each algorithm for solving J may be employed for solving
I; consequently, J is “at least as difficult” as I.
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A problem J is called NP–hard if I → J for each I ∈ NP . An
NP–hard problem exists (Cook [2]; hundreds of them have been found
since). Method for proving NP–hardness: if J is NP–hard and J → K,
then K is NP–hard.

Computing the value of

max
x∈X

f(x)

is said to be NP–hard if the decision problem
“is f(x) ≥ r for some x ∈ X ?”

is NP–hard (r rational).
If some NP–hard problem can be solved by a polynomial–time algo-

rithm, then all problems in NP are solvable by polynomial–time algo-
rithms. This would imply P = NP . However, no such problem (or
algorithm) is known to date, and it is widely believed (but not proved)
that

P 6= NP.

Hence, if this conjecture is true, then no NP–hard problem can be
solved by a polynomial–time algorithm. For more details, see Garey
and Johnson [3].

2. The norm ‖A‖∞,1

Given two vector norms ‖x‖α and ‖x‖β in Rn, a subordinate matrix
norm in Rn×n is defined by

‖A‖α,β = max
‖x‖α=1

‖Ax‖β

(see Golub and van Loan [6]). We shall consider the particular norm

‖A‖∞,1 = max
‖x‖∞=1

‖Ax‖1

(where ‖x‖∞ = maxi |xi| and ‖x‖1 =
∑

i |xi|).

THEOREM 1. [17] For each A ∈ Rn×n we have

‖A‖∞,1 = max{‖Ax‖1; |x| = e},

where e = (1, 1, . . . , 1)T . Moreover, if A is symmetric positive definite,
then

‖A‖∞,1 = max{xT Ax; |x| = e}.
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Note 1. Both finite formulae require maximization over the set of all
±1-vectors (of cardinality 2n).

THEOREM 2. [12], [14] The following decision problem is NP–hard:
Instance. A symmetric positive definite rational matrix A.
Question. Is ‖A‖∞,1 ≥ 1 ?

Proof sketch. The NP–hard problem “simple max–cut in a graph”
[4] can be reduced in polynomial time to this one; see [17] for a detailed
proof. 2

COROLLARY 1. [14] The problem of checking

‖A‖∞,1 < 1

is also NP–hard.

COROLLARY 2. [14] Computing ‖A‖∞,1 is NP–hard even in the class
of symmetric positive definite rational matrices.

3. Checking properties

A square interval matrix

AI = [A, A] = {A; A ≤ A ≤ A}

is said to be
• regular if each A ∈ AI is nonsingular,

and
• positive definite,
• P -matrix,
• stable

if each A ∈ AI has the respective property.

PROPOSITION 1. [17] For a symmetric positive definite matrix A, let

AI := [A−1 − E, A−1 + E],

where E is the matrix of all ones. Then the following assertions are
equivalent:

(i) ‖A‖∞,1 < 1,

(ii) AI is regular,
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(iii) AI is positive definite,

(iv) AI is a P -matrix,

(v) [−A−1 − E,−A−1 + E] is stable.
Proof sketch. (ii)⇒(i) by contradiction: if

‖A‖∞,1 = xT Ax ≥ 1

for some x with |x| = e, then

A′ := A−1 − xxT

xT Ax

belongs to AI and is singular (since A′Ax = 0).
(i)⇒(ii) by contradiction: if

A′′y = 0

for some A′′ ∈ AI and y 6= 0, then for the sign vector x of y we have

1 ≤ ‖Ax‖1 ≤ ‖A‖∞,1.

(ii)⇔(n)∈{(iii),(iv),(v)} by elementary means. 2

THEOREM 3. [12], [13], [20] Checking
• regularity,
• positive definiteness,
• P -property,
• stability

is NP–hard even in the class of rational interval matrices of the form

[B −E, B + E], (1)

where B is symmetric positive definite and E is the matrix of all ones.
Proof. According to the previous proposition, the NP–hard problem

′′‖A‖∞,1 < 1′′

can be reduced in polynomial time [1] to checking any of these proper-
ties for interval matrices of the form (1). 2

4. Computing enclosures

For a system of linear interval equations

AIx = bI
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(AI square), optimal enclosure is defined as the narrowest interval vec-
tor [x, x] satisfying

X ⊆ [x, x],

where
X = {x; Ax = b for some A ∈ AI , b ∈ bI}

is the solution set. If AI is regular, then the optimal enclosure is given
by

xi = min
X

xi,

xi = max
X

xi

(i = 1, . . . , n).

PROPOSITION 2. [16] Let A be symmetric positive definite and let
ε > 0. Then for the linear interval system

AIx = bI (2)

given by

AI =
(

1 [−εeT , εeT ]
0 A−1

)
, (3)

bI =
(

0
[−εe, εe]

)
(4)

(e is the vector of all ones) we have

x1 = ε2‖A‖∞,1.

Moreover, AI = [Ac −∆, Ac + ∆] satisfies

%(|A−1
c |∆) = 0

(i.e., is strongly regular).
Proof sketch.

x1 = max{εeT |x|; −εe ≤ A−1x ≤ εe} = ε2 max{‖Ax′‖1; −e ≤ x′ ≤ e}
= ε2 max{‖Ax′‖1; ‖x′‖∞ = 1} = ε2‖A‖∞,1.

2

THEOREM 4. [18] For each ε > 0, computing the optimal enclosure
[x, x] is NP–hard even in the class of rational systems of the form (2)–
(4).
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Proof. According to the previous proposition,

‖A‖∞,1 =
x1

ε2 ,

hence the NP–hard problem of computing ‖A‖∞,1 is reduced in poly-
nomial time [1] to that of computing x1. 2

5. Solvability (rectangular case)

Under a system of linear interval equations

AIx = bI (5)

(AI of size m× n) we understand the family of systems

Ax = b (6)

with data satisfying
A ∈ AI , b ∈ bI . (7)

A system (5) is called

• strongly feasible if each system (6) with data (7) has a nonnegative
solution,

• weakly feasible if some system (6) with data (7) has a nonnegative
solution.

THEOREM 5. [15] We have:

(i) checking strong feasibility is NP–hard even in the case n = 2m,

(ii) checking weak feasibility can be performed in polynomial time since
it is equivalent to solvability of

Ax ≤ b, Ax ≥ b, x ≥ 0.
Proof sketch. (i) For a symmetric matrix A,

‖A‖∞,1 < 1

is equivalent to strong solvability of the system (5) with

AI = [(−A−E, A− E), (−A + E,A + E)],

bI = [−e, e]
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(by Farkas lemma).
(ii) Due to Oettli–Prager theorem [11], (5) is weakly solvable if and

only if
Ax ≤ b, Ax ≥ b, x ≥ 0

has a solution, which can be checked by a polynomial-time linear pro-
gramming algorithm (Khachiyan [7]). 2

The problem of checking weak feasibility of (5) without the nonnega-
tivity restriction was proved to be NP–hard by Lakeyev and Kreinovich
[9].

As before, under a system of linear interval inequalities

AIx ≤ bI (8)

(AI of size m× n) we understand the family of systems

Ax ≤ b (9)

with data satisfying
A ∈ AI , b ∈ bI . (10)

A system (8) is called

• strongly solvable if each system (9) with data (10) has a solution,

• weakly solvable if some system (9) with data (10) has a solution.

THEOREM 6. [19], [14] We have:

(i) checking strong solvability can be performed in polynomial time
since it is equivalent to solvability of

Ax1 −Ax2 ≤ b,

x1 ≥ 0, x2 ≥ 0,

(ii) checking weak solvability is NP–hard even in the case m = 2n + 1.
Proof sketch. (i) The equivalence was proved by Rohn and Kreslová

[19].
(ii) Due to Gerlach’s description of weak solutions [5], for a sym-

metric positive definite A,

‖A‖∞,1 ≥ 1

is equivalent to weak solvability of

AIx ≤ bI ,
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where

AI =




A−1

−A−1

[−eT , eT ]


 ,

bI =




e
e
−1


 .

2

6. Linear and quadratic programming

For a linear programming problem

minimize cT x

subject to
Ax = b, x ≥ 0

denote
f(A, b, c) = inf{cT x; Ax = b, x ≥ 0}.

Consider the problem with fixed A, c and inexact right-hand side b ∈
[b, b]. Let

f = inf{f(A, b, c); b ∈ [b, b]},
f = sup{f(A, b, c); b ∈ [b, b]}

(range of optimal value; the bounds may be infinite).

THEOREM 7. [10], [14] We have:

(i) computing f can be done in polynomial time since

f = inf{cT x; b ≤ Ax ≤ b, x ≥ 0},

(ii) computing f is NP–hard even in the case of n = 2m and of a finite
value of f .

Proof sketch. (i) is known (Mráz [10]).
(ii) Given a symmetric positive definite A, for the problem

minimize eT x1 + eT x2
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subject to
A−1x1 −A−1x2 = b, x1 ≥ 0, x2 ≥ 0

with
−e ≤ b ≤ e

we have
f = ‖A‖∞,1

(by duality theorem). 2

THEOREM 8. [8], [14] Let D be symmetric positive definite. Then

(i) the problem of computing

min{xT Dx + cT x; Ax ≤ b}

can be solved in polynomial time,

(ii) the problem of computing

max{xT Dx + cT x; Ax ≤ b}

is NP–hard even in the case m = 2n.
Proof sketch. (i) is known (Kozlov, Tarasov and Khachiyan [8]).
(ii) We have

‖D‖∞,1 = max{xT Dx; |x| = e}
= max

{
xT Dx;

(
I
−I

)
x ≤

(
e
e

)}
.

2

Acknowledgements

This work was supported by the Charles University Grant Agency
under grant GAUK 195/96.

References

1. E. F. Bareiss. Sylvester’s identity and multistep integer-preserving Gaussian
elimination. Mathematics of Computation, 103:565–578, 1968.

2. S. A. Cook. The complexity of theorem-proving procedures. In Proceedings
of the 3rd Annual ACM Symposium on Theory of Computing, pages 151–158,
New York, 1971. Association for Computing Machinery.

proceeds.tex; 19/03/1997; 19:05; no v.; p.9



10 J. ROHN

3. M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the
Theory of NP–Completeness. Freeman, San Francisco, 1979.

4. M. R. Garey, D. S. Johnson and L. Stockmeyer. Some simplified NP–complete
graph problems. Theoretical Computer Science, 1:237–267, 1976.

5. W. Gerlach. Zur Lösung linearer Ungleichungssysteme bei Störung der rechten
Seite und der Koeffizientenmatrix. Mathematische Operationsforschung und
Statistik, Series Optimization, 12:41–43, 1981.

6. G. H. Golub and C. F. van Loan. Matrix Computations. The Johns Hopkins
University Press, Baltimore, 1983.

7. L. G. Khachiyan. A polynomial algorithm in linear programming. Doklady
Akademii Nauk SSSR, 244:1093–1096, 1979.

8. M. K. Kozlov, S. P. Tarasov and L. G. Khachiyan. Polynomial resolvability of
convex quadratic programming. Zhurnal Vychislitel’noi Matematiki i Matem-
aticheskoi Fiziki, 20(4), 1980.

9. A. V. Lakeyev and V. Kreinovich. NP-hard classes of linear algebraic systems
with uncertainties. To appear in Reliable Computing, 1997.
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