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Abstract. Checking regularity (or singularity) of interval matrices is a known NP-hard problem.
In this paper a general algorithm for checking regularity/singularity is presented which is not a priori
exponential. The algorithm is based on a theoretical result according to which regularity may be
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1. Introduction. An interval matrix

AI = [A, A] = {A; A ≤ A ≤ A}

(where A, A are n×n matrices and the inequality is to be understood componentwise)
is called regular if each A ∈ AI is nonsingular, and is said to be singular otherwise
(i.e., if it contains a singular matrix). The problem of checking regularity naturally
arises in solving linear interval equations, but it is also important in applications since
some frequently used properties of interval matrices (as positive definiteness, stability
or the P -matrix property) can be verified via checking regularity.

All presently known necessary and sufficient conditions for regularity of interval
matrices (summed up in [17], Theorem 5.1) exhibit exponential behaviour: they re-
quire solving at least 2n problems of some sort (as computing determinants, solving
linear equations, inverting matrices, checking the P -matrix property etc.), hence they
are of little use in practice except for examples of very low dimensions. The ex-
ponentiality inherent in all these conditions was explained by the result stating that
checking regularity of interval matrices is an NP-hard problem (Poljak and Rohn [15],
[16], see also Nemirovskii [13]). Hence, in view of the present status of the complexity
theory (the conjecture “P6=NP”, Garey and Johnson [4]), there is only little hope that
necessary and sufficient conditions verifiable in polynomial time may exist.

The present work was motivated by an attempt to construct an algorithm that
would require an exponential number of operations only in the “worst case” examples,
and would behave reasonably in the “average” ones. The algorithm presented in this
paper, whose main idea is due to Jansson [7], is based on a necessary and sufficient
condition of a quite different sort. First, it does not handle solely the interval matrix
AI , but it deals with the solution set X(AI , b) = {x; Ax = b for some A ∈ AI} of an
interval linear system AIx = b with a specially preselected right-hand side b. Second,
the necessary and sufficient condition says that for any component C of X(AI , b)
(i.e., a maximal nonempty connected subset of X(AI , b)), AI is regular if and only
if C is bounded. Hence, in order to check regularity, it is sufficient to take (better
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said, to generate) a single component of X(AI , b) and to check it for boundedness,
which can be done by applying repeatedly a linear programming procedure. The fact
that only one component is to be checked, together with a special choice of b aimed
at minimizing the number of applications of the linear programming procedure, is
decisive for achieving a big reduction in the amount of computations needed. As it
will be demonstrated later, we have been able to check in acceptable time regularity
of interval matrices up to the size n = 50, which would be almost impossible via the
classical necessary and sufficient conditions since 250 ≈ 1015.

The paper is organized as follows. To motivate the current research, in section 2
we first show how some properties of interval matrices (positive definiteness, stability
and the P -property) can be verified via checking regularity. The NP-hardness result
is stated in section 3. In section 4 we derive a necessary and sufficient singularity
condition of classical type; it not only demonstrates the inherent exponentiality of
the problem, but also shows a way how to try to resolve it. The necessary and
sufficient condition employed in the algorithm, formulated in terms of a component of
the solution set as explained above, is proved in section 5. The algorithm is described
in section 6, and the problem of the choice of an adequate right-hand side b is discussed
in section 7. Some examples are given in the last section.

We shall use the following notations. The absolute value of a matrix A = (aij) is
denoted by |A| = (|aij |); the same notation applies to vectors as well. The set of all
±1-vectors in Rn is denoted by Z, hence Z consists of 2n vectors. For each z ∈ Rn

we denote

Tz :=




z1 0 . . . 0
0 z2 . . . 0
...

...
. . .

...
0 0 . . . zn


 ,

i.e., Tz is the diagonal matrix with diagonal vector z. For x ∈ Rn we denote by sgn x
the sign vector of x defined by

(sgn x)i =

{
1 if xi ≥ 0,

−1 if xi < 0

(i = 1, . . . , n). Hence, sgn x ∈ Z for each x ∈ Rn. Moreover, if z = sgn x, then we
have |x| = Tzx; we shall use this relation later to avoid use of absolute values.

2. Regularity and other properties. To motivate the current research, we
shall state briefly here some results showing that a general method for checking reg-
ularity may be also employed for checking some other properties of interval matrices.

A real matrix A (not necessarily symmetric) is called positive definite if xT Ax > 0
for each x 6= 0, stable if Re λ < 0 for each eigenvalue λ of A, and P -matrix if all the
principal minors of A are positive. An interval matrix AI is said to have one of these
properties if each A ∈ AI has this property.

Checking positive definiteness of interval matrices is needed e.g. in global opti-
mization where branch-and-bound methods for nonlinear optimization problems may
be accelerated and may be also made finite by using a so-called expansion scheme (see
Jansson [6]) which is mainly based on proving positive definiteness of an interval ma-
trix. The following result from [19] reduces checking positive definiteness to checking
regularity:
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Theorem 2.1. An interval matrix [A, A] is positive definite if and only if the
interval matrix

[
1
2 (A + AT ), 1

2 (A + A
T

)
]

is regular and contains at least one positive definite matrix.
The problem of checking stability of interval matrices has attracted interest of

many researchers in the last decade since it is closely connected to the problem of
robust stability of a linear time-invariant system ẋ = Ax under data perturbations
(see Barmish [1], Lunze [9] and the survey paper by Mansour [10]). Here, reduction to
regularity holds for symmetric interval matrices only. An interval matrix AI = [A, A]
is called symmetric if both the bounds A,A are symmetric; hence a symmetric interval
matrix may contain nonsymmetric matrices. The following result comes again from
[19]:

Theorem 2.2. A symmetric interval matrix AI is stable if and only if it is
regular and contains at least one symmetric stable matrix.

The study of P -matrices is motivated, among other applications, by the fact that
the linear complementarity problem

x+ = Ax− + b

has a unique solution x = (xi) for each right-hand side b if and only if A is a P -matrix
(see Murty [11]). Here the vectors x+ and x− are defined by x+

i = max{xi, 0} and
x−i = max{−xi, 0} for each i, so that x = x+−x−. We have an analogous result [20]:

Theorem 2.3. A symmetric interval matrix AI is a P -matrix if and only if it is
regular and contains at least one symmetric P -matrix.

These results give further motivation for studying the problem of checking regu-
larity of interval matrices.

3. The NP-hardness result. At the end of the 1980’s, existence of more than
10 necessary and sufficient conditions for checking regularity of interval matrices,
each of which required an exponential amount of time to check (summed up in [17],
Theorem 5.1), led to suspicion that the problem might be NP-hard. The corresponding
statement was proved by Poljak and Rohn in a report [15] and later in a journal form
[16]; it was independently proved by Nemirovskii [13]. In its most recent form [8], the
result is stated as follows:

Theorem 3.1. Checking regularity is NP-hard in the class of interval matrices
of the form

[A− E,A + E],

where A is a nonnegative symmetric positive definite rational matrix and E is the
matrix of all ones.

This result shows that checking regularity of interval matrices is a problem at least
as hard as the most difficult combinatorial problems in the class NP. Existence of a
polynomial-time algorithm for checking regularity of interval matrices would imply,
in view of the definition of NP-hardness (see Garey and Johnson [4]), polynomial-
time solvability of all problems in the class NP – a possibility which at the present
state of human knowledge cannot be fully excluded, but in view of the experience
with solving problems from the class NP gathered so far ought to be considered very
unlikely. Nevertheless, polynomial-time algorithms may exist for special classes of
interval matrices, see [2].
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This shows that the problem we are interested in is in its full generality very
difficult.

4. A necessary and sufficient condition. Some of the subsequent results
(Theorems 4.2 and 5.1) can be derived from the Oettli-Prager theorem [14] for interval
linear equations. In order to keep the paper self-contained, we prove them here in
another way using the following result (Theorem 4.1) which is of independent interest.
For the purpose of its formulation, for an interval matrix AI = [A, A] we introduce

Ac = 1
2 (A + A)

(the center matrix) and

∆ = 1
2 (A−A)

(the radius matrix), then AI can be written in the form

AI = [Ac −∆, Ac + ∆]

which we shall use from this point on. We have this result (for its formulation and
proof, we refer to the notations introduced at the end of section 1):

Theorem 4.1. Let AI = [Ac − ∆, Ac + ∆] be an n × n interval matrix and let
x ∈ Rn. Then

{Ax; A ∈ AI} = [Acx−∆|x|, Acx + ∆|x|].
Proof. If A ∈ AI , then |Ax−Acx| = |(A−Ac)x| ≤ ∆|x|, which implies

Ax ∈ [Acx−∆|x|, Acx + ∆|x|].
Conversely, let b ∈ [Acx−∆|x|, Acx + ∆|x|], so that |Acx− b| ≤ ∆|x|. Define

yi =

{
(Acx− b)i/(∆|x|)i if (∆|x|)i 6= 0,
1 if (∆|x|)i = 0

(i = 1, . . . , n), then |yi| ≤ 1 and (Acx − b)i = yi(∆|x|)i holds for each i, hence with
z = sgn x we have Acx − b = Ty∆Tzx and thus also (Ac − Ty∆Tz)x = b, where
Ac − Ty∆Tz belongs to AI due to |Ty∆Tz| ≤ ∆, hence b ∈ {Ax; A ∈ AI}.

Returning back to our problem, we obtain this characterization of singularity:
Theorem 4.2. An interval matrix AI = [Ac−∆, Ac + ∆] is singular if and only

if the inequality

|Acx| ≤ ∆|x|(4.1)

has a nontrivial solution.
Proof. Obviously, AI is singular if and only if

0 ∈ {Ax; A ∈ AI}
holds for some x 6= 0, which in view of Theorem 4.1 is equivalent to

Acx−∆|x| ≤ 0 ≤ Acx + ∆|x|,(4.2)

and thus also to

|Acx| ≤ ∆|x|.
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As we have seen in the proof, the left-hand side absolute value in (4.1) can be
removed (Eq. (4.2)), but the right-hand one remains a problem. We can remove it
only at the expense of the latent exponentiality in (4.1) becoming apparent, as it can
be seen from the next theorem.

Theorem 4.3. An interval matrix AI = [Ac−∆, Ac + ∆] is singular if and only
if the linear programming problem

max{zT x; (Ac −∆Tz)x ≤ 0, (Ac + ∆Tz)x ≥ 0, Tzx ≥ 0}(4.3)

is unbounded for some z ∈ Z.
Proof. If AI is singular, then by Theorem 4.2 there exists a vector x 6= 0 satisfying

−∆|x| ≤ Acx ≤ ∆|x|.(4.4)

Setting z = sgn x, we have |x| = Tzx, hence Tzx ≥ 0 and from (4.4) it follows
(Ac −∆Tz)x ≤ 0 and (Ac + ∆Tz)x ≥ 0, which shows that x is a feasible solution of
(4.3). Moreover, zT x =

∑
i |xi| > 0. Since αx is a feasible solution of (4.3) for each

α > 0, we can see that the linear programming problem (4.3) is unbounded.
Conversely, let (4.3) be unbounded for some z ∈ Z. Then there exists an x

satisfying (Ac−∆Tz)x ≤ 0, (Ac + ∆Tz)x ≥ 0, Tzx ≥ 0 and zT x > 0. Since Tzx = |x|,
we obtain that (4.1) is satisfied for some x 6= 0, hence AI is singular.

Let us now discuss this result. If we find out a z ∈ Z for which (4.3) is unbounded,
then AI is proved to be singular and we are done. However, if AI is regular, then we
must inspect all the 2n linear programming problems of type (4.3) (for each z ∈ Z)
in order to be able to prove it. The cornerstone of the exponentiality is the fact
that each linear programming problem (4.3) is feasible (x = 0 is always a feasible
solution), hence none of the problems (4.3) can be a priori excluded. In this way
we come to the basic idea: to replace the zero vector in the right-hand sides of the
constraints (Ac −∆Tz)x ≤ 0, (Ac + ∆Tz)x ≥ 0 by some nonzero vector b in order to
make infeasible as many resulting linear programming problems as possible. We shall
exploit and develop this idea in the next section.

5. Theoretical basis of the algorithm. Given an n × n interval matrix AI

and a vector b ∈ Rn (we shall specify its choice later), consider the solution set of a
system of interval linear equations defined by

X(AI , b) = {x; Ax = b for some A ∈ AI}.
First we have this description:

Theorem 5.1. Let AI = [Ac − ∆, Ac + ∆] be an n × n interval matrix and let
b ∈ Rn. Then

X(AI , b) = {x; |Acx− b| ≤ ∆|x|}.(5.1)

Proof. x ∈ X(AI , b) if and only if

b ∈ {Ax; A ∈ AI}
holds, which according to Theorem 4.1 is equivalent to

Acx−∆|x| ≤ b ≤ Acx + ∆|x|,
and thereby also to

|Acx− b| ≤ ∆|x|.
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Next we shall remove the absolute values from (5.1):
Theorem 5.2. Let AI = [Ac − ∆, Ac + ∆] be an n × n interval matrix and let

b ∈ Rn. Then

X(AI , b) =
⋃

z∈Z

Xz(AI , b),

where

Xz(AI , b) = {x; (Ac −∆Tz)x ≤ b, (Ac + ∆Tz)x ≥ b, Tzx ≥ 0}(5.2)

for z ∈ Z.
Proof. If x ∈ X(AI , b), then |Acx−b| ≤ ∆|x| and we can easily see that x satisfies

(Ac −∆Tz)x ≤ b, (Ac + ∆Tz)x ≥ b, Tzx ≥ 0(5.3)

for z = sgn x, hence x ∈ Xz(AI , b). Conversely, if x ∈ Xz(AI , b) for some z ∈ Z, then
from (5.3) we have |Acx− b| ≤ ∆|x|, hence x ∈ X(AI , b).

The set Xz(AI , b), defined by (5.2), is nothing else than the intersection of the
solution set X(AI , b) with the orthant {x ∈ Rn; Tzx ≥ 0}. Since Xz(AI , b) is de-
scribed by a system of linear inequalities, it is a convex polytope; in particular, it is
connected (let us recall that a set is called connected [sometimes, path-connected] if
any two points of it can be connected by a curve which belongs entirely to the set;
in case of a convex set the curve is simply the segment connecting the two points).
However, X(AI , b), as the union of such sets, may be neither convex, nor connected.
Consider a one-dimensional example

[−1, 1]x1 = [1, 1].

Here X(AI , b) consists of two disjoint unbounded connected sets

X−1(AI , b) = (−∞,−1]

and

X1(AI , b) = [1,∞).

We shall see later (Theorem 5.3) that such a situation may occur for singular interval
matrices only (indeed, Ac is singular here).

A nonempty connected subset C of X(AI , b) is called a component of X(AI , b) if
it has the property

C ⊆ D ⊆ X(AI , b), D connected ⇒ C = D,

i.e., if it is a maximal connected subset of X(AI , b) with respect to inclusion. Hence
each set Xz(AI , b), z ∈ Z, being connected, must be entirely contained in a single
component. This implies that each component C of X(AI , b) is of the form

C =
⋃

z∈Y

Xz(AI , b)(5.4)

for some Y ⊆ Z. The following theorem shows that regularity or singularity of AI

may be judged from each single component of X(AI , b). The result is due to Jansson
[7] where it appeared in another formulation.
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Theorem 5.3. Let AI be an n × n interval matrix, let b ∈ Rn and let C be an
arbitrary component of X(AI , b). Then AI is singular if and only if C is unbounded.

Proof. Both implications are proved by contradiction. If AI is regular, then
X(AI , b), as the range of the continuous mapping A 7→ A−1b on a compact set AI , is
connected and bounded, hence C = X(AI , b), which implies that C is bounded.

Conversely, let C be bounded. Since C 6= ∅ by definition, there exists an x0 ∈ C
satisfying A0x0 = b for some A0 ∈ AI , and boundedness of C implies nonsingularity
of A0 (if A0 were singular, then A0x̂ = 0 for some x̂ 6= 0 and C would contain an
unbounded set {x0 + λx̂; λ ∈ R1}, a contradiction). To prove that AI is regular,
assume to the contrary that AI contains a singular matrix A1. For each t ∈ [0, 1]
denote

At = A0 + t(A1 −A0),(5.5)

and let

τ = inf{t ∈ [0, 1]; At is singular}.

In view of continuity of the determinant, the infimum is achieved as minimum, hence
Aτ is singular and τ ∈ (0, 1]. For each t ∈ [0, τ), At is nonsingular, hence

xt = A−1
t b

is well defined and the mapping s 7→ xs, s ∈ [0, t], defines a curve in X(AI , b) con-
necting x0 with xt, hence xt ∈ C for each t ∈ [0, τ). Consider now the sequence of
points {xtm} with

tm = (1− 1
m )τ,(5.6)

m = 1, 2, . . .. Then {xtm} is bounded since C is bounded, hence it contains a conver-
gent subsequence {xtmk

}, xtmk
→ x∗. Then x∗ ∈ C since C is closed due to (5.4),

(5.2). As

Atmk
xtmk

= b

holds for each k, taking k →∞ we obtain in view of (5.5), (5.6) that

Aτx∗ = b.

But since Aτ is singular, there exists an x̃ 6= 0 with Aτ x̃ = 0, hence Aτ (x∗ + λx̃) = b
for each λ ∈ R1, which shows that C contains the unbounded set {x∗ + λx̃; λ ∈ R1},
a contradiction. Hence AI must be regular; this concludes the second part of the
proof.

The result shows that if AI is singular, then for each b ∈ Rn, all components of
X(AI , b) are unbounded; if AI is regular, then X(AI , b) has a single component which
is equal to X(AI , b).

It remains to show how to check unboundedness of a component C in the form
(5.4):

Theorem 5.4. A component

C =
⋃

z∈Y

Xz(AI , b)
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is unbounded if and only if the linear programming problem

max{zT x; (Ac −∆Tz)x ≤ b, (Ac + ∆Tz)x ≥ b, Tzx ≥ 0}(5.7)

is unbounded for some z ∈ Y .
Proof. Obviously, C is unbounded if and only if Xz(AI , b) is unbounded for some

z ∈ Y . If Xz(AI , b) is unbounded, then the optimization problem

max{|xi|; (Ac −∆Tz)x ≤ b, (Ac + ∆Tz)x ≥ b, Tzx ≥ 0}(5.8)

is unbounded for some i, which implies that (5.7) is unbounded since

|xi| ≤
∑

j

|xj | = zT x

holds for each feasible solution x of (5.7), (5.8). Conversely, if (5.7) is unbounded,
then (5.8) must be unbounded for some i, which means that the set Xz(AI , b) is
unbounded.

By comparing Theorems 4.3 and 5.4, we can see that the only (but essential)
distinction made by the introduction of the right-hand side b is the difference in
quantifiers “z ∈ Z” and “z ∈ Y ”, where cardinality of Y is equal to the number of the
orthants intersected by the component C. Clearly, this number may be influenced by
an appropriate choice of b. We shall discuss this question in section 7, but first we
shall formulate an algorithm based on theoretical principles of this section.

6. The algorithm. The algorithm is based on Theorems 5.3 and 5.4 and con-
structs a component C of the form (5.4) implicitly in the following way. At the
starting point, a list L of z’s to be checked is initialized by setting z := sgn (A−1

c b).
In the current step of the algorithm, if for the current z ∈ L the problem (5.7) is
unbounded, then AI is proved singular and the algorithm terminates; otherwise, if
(5.7) is feasible, then we insert into L all the “neighbouring” vectors from the set

N(z) = {(z1, . . . , zj−1,−zj , zj+1, . . . , zn)T ; 1 ≤ j ≤ n}

that have not been checked yet; to be able to recognize it, we also keep a list K
of vectors that have already passed the check. If L becomes empty at some stage,
then the component of X(AI , b) containing the vector A−1

c b has been proved to be
bounded, and AI is regular by Theorem 5.3. Following we give a formal description
of the algorithm written in a pseudo-PASCAL code:
sing:=false;
if Ac is singular then sing:=true
else

L := ∅; K := ∅;
select b; solve Acx = b;
z := sgn x; insert z into L;
repeat

remove an item z from L;
insert z into K;
if (5.7) is unbounded then sing:=true
else if (5.7) is feasible then L := L ∪ (N(z)− (K ∪ L))

until (sing or L = ∅);
if sing then {AI is singular} else {AI is regular}.
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In order to simplify the proof of the main theorem, we first formulate an auxiliary
result concerning the case when singularity was not detected during the algorithm.
Denote by C0 the component of X(AI , b) containing the point xc = A−1

c b and let
Y0 be the set of ±1-vectors that were inserted into L in the course of the algorithm.
Then Y0 has this property:

Lemma 6.1. If x ∈ C0 and Tz0x ≥ 0 for some z0 ∈ Y0, then each z ∈ Z with
Tzx ≥ 0 belongs to Y0.

Proof. For the purpose of the proof, denote the linear programming problem (5.7)
by P (z). Then x is a feasible solution of some P (z). Since Tz0x = |x| = Tzx, we can
see from the form of (5.7) that x is a feasible solution of P (z0). Let Tzx ≥ 0, z 6= z0.
Denote

J = {j; zj 6= (z0)j} = {j1, . . . , jm}.
Since Tz0x ≥ 0 and Tzx ≥ 0, it must be xj = 0 for each j ∈ J . Set z0 = z0 and define
vectors zk ∈ Z, k = 1, . . . , m, in the following way:

(zk)j =

{
(zk−1)j if j 6= jk,

−(zk−1)j if j = jk
(6.1)

(k = 1, . . . , m, j = 1, . . . , n). We shall prove by induction on k = 0, . . . ,m that
zk ∈ Y0 and x is a feasible solution of P (zk). This is obvious for k = 0. If the
assumption is true for some k − 1 ≥ 0, then zk−1 ∈ Y0 and P (zk−1) is feasible, hence
N(zk−1) − (K ∪ L) was added to L in the respective step. Since zk ∈ N(zk−1) by
(6.1), zk was either already present in K ∪ L, or newly added to L, in both cases
zk ∈ Y0. Furthermore, since x is a feasible solution of P (zk−1) and Tzk−1x = Tzkx
holds as xjk

= 0, it is also a feasible solution of P (zk). This concludes the proof by
induction; since zm = z, we have z ∈ Y0.

As it can be seen, this detailed proof is a formalization of the following idea: if
we take a path from xc to x ∈ C0, then the only change of signs occurs when the
path passes through a point with one or more zero components; all the respective sign
vectors are added to L in the course of the algorithm, hence they belong to Y0.

Now we finally prove that the algorithm really performs the task for which it was
designed:

Theorem 6.2. For each n×n interval matrix AI and each b ∈ Rn, the algorithm
in a finite number of steps checks regularity or singularity of AI .

Proof. First, only elements of the finite set Z are being inserted into L and
no element may be reinserted, hence the algorithm terminates in a finite number of
steps. If some problem (5.7) is proved unbounded, then AI is singular by Theorem
5.4. Hence, we only have to prove that if AI has not been found singular and if the
list L becomes empty, then AI is regular.

The component C0 may be written in the form (5.4):

C0 =
⋃

z∈Y

Xz(AI , b),

where Y may be chosen so that Xz(AI , b) 6= ∅ for each z ∈ Y . We shall prove that

Y ⊆ Y0(6.2)

holds. Since L = ∅, this will imply that all Xz(AI , b), z ∈ Y have been checked to be
bounded, hence AI is regular by Theorem 5.4.
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To prove (6.2), take a z ∈ Y . Choose an x ∈ Xz(AI , b), so that Tzx ≥ 0. Since
C0 is connected and contains xc = A−1

c b, there exists a path from xc to x, contained
entirely in C0. In view of convexity of the sets Xz(AI , b), z ∈ Z, the path may be
chosen in a piecewise linear form x0x1 . . . xm, where x0 = xc, xm = x and the segment
with endpoints xi, xi+1 is always a part of a single orthant (i = 0, . . . , m − 1). We
shall prove by induction on i that for each i = 0, . . . ,m, if Tzx

i ≥ 0 for some z ∈ Z,
then z ∈ Y0. Since zc = sgn xc is inserted into L at the beginning of the main loop
and Tzcxc ≥ 0, the assertion for x0 = xc follows from Lemma 6.1. Let the assertion
be true for xi, i ≥ 0. Since the whole segment with endpoints xi and xi+1 is a part
of a single orthant, there exists a z̃ ∈ Z such that Tz̃x

i ≥ 0 and Tz̃x
i+1 ≥ 0. Then

z̃ ∈ Y0 by assumption concerning xi, hence from Tz̃x
i+1 ≥ 0, z̃ ∈ Y0 we obtain from

Lemma 6.1 that each z ∈ Z with Tzx
i+1 ≥ 0 belongs to Y0. This concludes the proof

by induction. Hence, since Tzx
m = Tzx ≥ 0, we have z ∈ Y0. This proves (6.2).

In the form presented above, the algorithm suffers a serious setback. If a linear
program (5.7) is found bounded (i.e., it has an optimal solution), then all the neigh-
bouring vectors y ∈ N(z) are added to the list L (except those that have been already
included). But we can see from the proof of Lemma 6.1 that we only need N(z) to
contain all the neighbouring vectors y satisfying Xy(AI , b) ∩ Xz(AI , b) 6= ∅. Hence,
vectors y with Xy(AI , b) ∩ Xz(AI , b) = ∅ need not be included into N(z), without
affecting validity of Lemma 6.1 and of Theorem 6.2. In the next theorem we show how
such vectors may be identified using information gathered from the current problem.

Theorem 6.3. Let for some z ∈ Z the linear programming problem (5.7) have
an optimal solution x̂, and let Â ∈ AI be a nonsingular matrix satisfying Âx̂ = b.
Then we have

Xy(AI , b) ∩Xz(AI , b) = ∅
for each

y = (z1, . . . , zj−1,−zj , zj+1, . . . , zn)T ∈ N(z)(6.3)

such that

(zT x̂)(|Â−1|∆e)j < |x̂j |,(6.4)

where e is the vector of all ones.
Proof. Assume to the contrary that there exists an x ∈ Xy(AI , b) ∩ Xz(AI , b).

Then in view of (6.3) it must be

xj = 0.(6.5)

Since x ∈ X(AI , b), there exists an A ∈ AI such that Ax = b. From the identity

Â(x− x̂) = (Â−A)x

we have

|x− x̂| = |Â−1(Â−A)x| ≤ |Â−1|∆|x|.(6.6)

But since x ∈ Xz(AI , b), for each i ∈ {1, . . . , n} there holds

|xi| ≤
∑

k

|xk| = zT x ≤ zT x̂,
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hence

|x| ≤ (zT x̂)e,

and from (6.6) we obtain

|x− x̂| ≤ (zT x̂)|Â−1|∆e.(6.7)

But from (6.4), (6.5) and (6.7) we have

|x̂j | = |xj − x̂j | ≤ (zT x̂)(|Â−1|∆e)j < |x̂j |,
which is a contradiction. Hence, Xy(AI , b) ∩Xz(AI , b) = ∅.

This result shows that the algorithm will remain in force if we include into N(z)
only those vectors y of the form (6.3) which do not satisfy (6.4). A matrix Â satisfying
Âx̂ = b may be constructed by means of the proof of Theorem 4.1.

In the general description of the algorithm we did not specify the order in which
the items are to be removed from the list L. For an efficient implementation it is
recommendable, once a problem (5.7) has been solved, to check immediately all the
problems (5.7) with y of the form (6.3) for j’s not satisfying (6.4), since each of these
linear programming problems differs from the original one in one column and one
coefficient of the objective function only, so that the previously computed simplex
tableau may be easily updated for the new problem. Practical experience shows
that in this implementation the algorithm requires O(pn4) operations, where p is the
number of linear programming problems (5.7) solved in the course of the algorithm.

7. The choice of b. It is obvious that the performance of the algorithm depends
heavily on the number of orthants intersected by the component C0. It is therefore a
natural idea to try to find a right-hand side vector b such that C0 would be entirely
contained in a single orthant, preferably the nonnegative one. Unfortunately, it turns
out that this is generally not possible, even in case of regular interval matrices. The
following example is due to Nedoma; we quote here the result only, referring an
interested reader to [12] for a proof:

Example. Let AI = [Ac −∆, Ac + ∆] with

Ac =




0 2 2
2 0 4
1 1 1


 ,

∆ =




0 3
2

3
2

3
2 0 0
0 0 0


 .

Then AI is regular and there does not exist a b ∈ R3 satisfying

X(AI , b) ⊂ (R3
+)0,

where (R3
+)0 is the interior of the nonnegative orthant in R3.

Hence, we must set the goal differently: to find a b such that X(AI , b) intersects
a possibly small number of orthants. Let xc = A−1

c b as before and let x ∈ X(AI , b).
Then there exists a matrix A ∈ AI with Ax = b, hence

x = xc + A−1
c (Ac −A)x.(7.1)
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We shall try to choose b such that |xc| = |A−1
c b| is componentwise as large as possible.

Then, in view of (7.1), xc and the perturbed solution x should stay in the same orthant,
or differ only in a few signs.

Because A−1
c (αb) = αA−1

c b, it follows that |A−1
c b| can be made arbitrarily large.

Therefore it is sufficient to look only at right-hand sides b ∈ Rn with ‖b‖∞ ≤ 1. This
leads to the optimization problem

max{γ; |A−1
c b| ≥ γe, −e ≤ b ≤ e}.(7.2)

This problem can be solved exactly by applying 2n linear programming calls. But
for construction of an appropriate right-hand side we need only a reasonably good
approximation of the optimal solution. Therefore, we proceed in the following way.
First, we look at the discrete problem

max{γ; |A−1
c b| ≥ γe, b ∈ Z}.(7.3)

The solution of (7.3) should be a good approximation of the solution of (7.2). Since
each component of |A−1

c b|must be greater than or equal to γ, we may assume that A−1
c

is row equilibrated, i.e., the ith row of A−1
c is multiplied by the factor 1/maxj |(Ac)−1

ij |,
i = 1, . . . , n. Row scaling does not change regularity or singularity of an interval
matrix AI .

In order to calculate an approximation of an optimal solution of (7.3), we use a
scheme which locally improves γ. We attempt to improve a current approximation b
by looking for a superior solution bnew in an appropriate neighbourhood of b. In the
first step b, bnew ∈ Z are called neighboured if they differ in exactly one entry. The
neighbour bnew is accepted as a new approximation if the corresponding new objective
value γnew is better than the previous one. Following we give a formal description (ei

denotes the ith column of the unit matrix):
b := e; γ := minj |(A−1

c b)j |;
for k = 1, . . . , k1 do begin

i := k mod(n) + 1;
bnew := b− 2biei; γnew := minj |(A−1

c bnew)j |;
if γnew > γ then begin b := bnew; γ := γnew end

end.
This algorithm starts with b = e, calculates k1 neighbours, and compares the corre-
sponding objective values. We have chosen k1 = n2. Because

A−1
c bnew = A−1

c b− 2biAc
−1ei,

the computational costs of the previous algorithm are O(n3) operations. Notice that
the statement bnew := b − 2biei simply changes the ith entry of b from −1 to 1 or
conversely.

In the second step we improve the previously calculated right-hand side b by
taking the same algorithm, but changing the neighbourhood. Now b, bnew ∈ Z are
called neighboured if they differ in exactly two entries. The algorithm runs as follows:
for k = 1, . . . , k2 do
for l = 1, . . . , k2 do begin

i := k mod(n) + 1; h := l mod(n) + 1;
if i 6= h then begin

bnew := b− 2biei − 2bheh; γnew := minj |(A−1
c bnew)j |;

if γnew > γ then begin b := bnew; γ := γnew end
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end
end.
We have chosen k2 = n, and a similar argument as above shows that this algorithm
needs O(n3) operations.

The last calculated b, γ in the previous algorithm, denoted by b̂, γ̂, serve as an
approximation of an optimal solution of the problem (7.3). Because we intended to
solve the problem (7.2), we solve in the third step the linear programming problem

max{γ; TzA
−1
c b ≥ γe, −e ≤ b ≤ e},

where z = sgn (A−1
c b̂). Since b̂, γ̂ is a feasible solution of this problem, it follows

immediately that its optimal solution b∗ satisfies

minj |(A−1
c b∗)j | ≥ minj |(A−1

c b̂)j |,

and we can use b∗ as the desired right-hand side for the main algorithm of section 6.

8. Numerical experiments. In this section results of some numerical exper-
iments are described. To demonstrate how the algorithm works and what are the
computational costs of the method, we have also added some examples which are
not typical, or where the algorithm does not behave well. The computational costs
are proportional to the number p of linear programming problems (5.7) solved in the
course of the algorithm. Therefore, we display in the following tables the number p.
The program of our algorithm is written in MATLAB, and uses IEEE double floating
point arithmetic.

We compare our algorithm with two sufficient regularity conditions. The first one
(Beeck [3]) assures regularity of AI = [Ac −∆, Ac + ∆] if

% := %(|A−1
c |∆) < 1(8.1)

holds. The second one due to Rump [21], [22] states that AI is regular if

σ :=
σmax(∆)
σmin(Ac)

< 1,(8.2)

where σmax(∆), σmin(Ac) denote the maximal singular value of ∆ and the minimal
singular value of Ac, respectively. We shall see that in many cases both conditions
are not satisfied, but AI is regular. We shall also consider the radius of regularity of
an interval matrix AI = [Ac −∆, Ac + ∆] defined [16] by

r(AI) = inf{ε ≥ 0; [Ac − ε∆, Ac + ε∆] is singular}.

Hence, AI is regular if and only if r(AI) > 1.
In what follows we present results of computations of eight examples. In all of

them Ac is fixed and ∆ is varied depending on a real parameter κ; in most cases
(examples 2 and 4 through 7) we set ∆ = κ|Ac|. It can be seen from the tables that
p grows, or does not decrease, until the radius of regularity is reached. It is typical
for the method that singularity can be proved very fast (often with p = 1) for many
examples because singular matrices usually occur in almost all orthants. Nevertheless,
there exist also problems where p increases even in the singular case (example 6).

Example 1. The following example can be viewed as a generalization of the
two-dimensional example 3.2 in [17] to the multi-dimensional case. The center matrix
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Ac has nonzero entries only in the main diagonal, and above and below the k-th
diagonals. We have chosen n = 50, k = 48 and Ac of the form

(Ac)ij =





50 if i = j,
100 if j ≥ i + 48,

−100 if i ≥ j + 48,
0 otherwise

(i, j = 1, . . . , 50). The radius matrix ∆ is defined as follows:

(∆)ij =





40 if i = j,
0.01 + κ if j ≥ i + 48,
0.01 + κ if i ≥ j + 48,
0.01 otherwise

(i, j = 1, . . . , 50). Hence, AI has large intervals [10, 90] on the diagonal, above and
below the k-th diagonals the widths of the intervals are very large (about 2κ), and for
the zero entries of Ac we have small intervals [−0.01, 0.01]. Table 1 shows behaviour
of our algorithm and of the two sufficient regularity conditions for growing κ. We use
an additional variable reg which is set to 1 if AI is regular, and reg = 0 in case of
singularity.

κ reg % σ p
8 1 0.9290 1.0595 3
16 1 1.1141 1.3183 3
24 1 1.2979 1.5772 4
32 1 1.4809 1.8361 5
40 1 1.6634 2.0950 6
48 1 1.8454 2.3539 6
56 1 2.0271 2.6128 6
64 1 2.2085 2.8716 6
72 1 2.3897 3.1305 6
80 1 2.5708 3.3894 6
88 1 2.7518 3.6483 6
96 1 2.9327 3.9072 6
104 0 3.1135 4.1661 1
112 0 3.2942 4.4250 1
120 0 3.4748 4.6838 1
128 0 3.6554 4.9427 1
136 0 3.8360 5.2016 1
144 0 4.0165 5.4605 1
152 0 4.1970 5.7194 1
160 0 4.3774 5.9783 1

Table 1
We observe that with exception of κ = 8 both sufficient regularity conditions (8.1),
(8.2) are not satisfied, but our algorithm proves regularity of AI up to κ = 96, that
is, the intervals above and below the k-th diagonal are [3.99, 196.01]. In this case % is
about 3, σ is about 4, and p = 6. Change from regularity to singularity occurs between
κ = 96 and κ = 104. In this region we performed some additional experiments with
step size 0.5. For the values κ = 96.5, 97, 97.5, 98 our algorithm proved regularity with
p = 6, for κ = 99.5, 100, . . . , 103.5 singularity was proved with p = 1, but for the values
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κ = 98.5 and κ = 99 the algorithm run was stopped inconclusively after p reached
1000. For κ ≥ 104 singularity of AI was proved again with p = 1 (cf. the remark
at the end of section 4). This shows that in a small region around κ = r(AI) the
algorithm exhibits exponential behaviour (which is a consequence of the NP-hardness
result of section 3), whereas outside this region the computational costs indicated by
p are very moderate, and much smaller in case of singularity than in that of regularity.
This typical behaviour (confirmed by many other experiments) constitutes the main
advantage of our algorithm in contrast to necessary and sufficient regularity conditions
[17, Thm. 5.1] which are exponential in n in each regularity case.

Example 2. Here the center matrix Ac is the Hilbert matrix of dimension n = 7.
The 2-norm condition number of this matrix is about 4.7 · 108. The radius matrix is
∆ = κ|Ac|, i.e., we consider relative perturbations.

κ reg % σ p
1.0e-09 1 0.1185 0.4754 1
2.0e-09 1 0.2369 0.9507 1
3.0e-09 1 0.3554 1.4261 1
4.0e-09 1 0.4738 1.9015 1
5.0e-09 1 0.5923 2.3768 1
6.0e-09 1 0.7108 2.8522 1
7.0e-09 1 0.8292 3.3276 1
8.0e-09 1 0.9477 3.8029 1
9.0e-09 0 1.0661 4.2783 1
1.0e-08 0 1.1846 4.7537 1
1.1e-08 0 1.3031 5.2290 1
1.2e-08 0 1.4215 5.7044 1
1.3e-08 0 1.5400 6.1798 1
1.4e-08 0 1.6585 6.6551 1
1.5e-08 0 1.7769 7.1305 1
1.6e-08 0 1.8954 7.6059 1
1.7e-08 0 2.0138 8.0812 1
1.8e-08 0 2.1323 8.5566 1

Table 2

Table 2 shows that in all cases p = 1 and % characterizes the radius of regularity
r(AI) because the inverse Hilbert matrix has a rank 1 sign pattern (see [23]), whereas
σ underestimates this radius.

Example 3. This example is taken from [25], p. 442. The center matrix is given
by

(Ac)ij =





11− j if j ≥ i,
10− j if j = i− 1,
0 if j < i− 1

(i, j = 1, . . . , 10). The 2-norm condition number of Ac is about 2.8543 · 107. The
coefficients of the radius matrix ∆ are defined for all nonzero entries of Ac by ∆ij =
κ|(Ac)ij |, and are equal to 0.1 otherwise.
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κ reg % σ p
1.0e-08 1 0.1593 4.4539e+05 1
2.0e-08 1 0.2264 4.4539e+05 1
3.0e-08 1 0.2848 4.4539e+05 1
4.0e-08 1 0.3392 4.4539e+05 1
5.0e-08 1 0.3912 4.4539e+05 1
6.0e-08 1 0.4417 4.4539e+05 1
7.0e-08 1 0.4912 4.4539e+05 1
8.0e-08 1 0.5398 4.4539e+05 1
9.0e-08 1 0.5879 4.4539e+05 1
1.0e-07 1 0.6354 4.4539e+05 1
1.1e-07 1 0.6826 4.4539e+05 1
1.2e-07 1 0.7295 4.4539e+05 1
1.3e-07 1 0.7761 4.4539e+05 1
1.4e-07 1 0.8225 4.4539e+05 1
1.5e-07 1 0.8687 4.4539e+05 1
1.6e-07 1 0.9148 4.4539e+05 1
1.7e-07 1 0.9607 4.4539e+05 1
1.8e-07 0 1.0065 4.4539e+05 1
1.9e-07 0 1.0522 4.4539e+05 1
2.0e-07 0 1.0977 4.4539e+05 1

Table 3

Table 3 shows that in all cases p = 1, % estimates very well the radius of regularity
r(AI), whereas σ largely underestimates this radius.

Example 4. This example is taken from [5], p. 41. The 10-dimensional center
matrix is orthogonal and given by

(Ac)ij = (2/(n + 1))1/2 sin(ijπ/(n + 1)),

and the radius matrix is defined by

∆ = κ|Ac|.
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κ reg % σ p
0.025 1 0.2199 0.0741 1
0.050 1 0.4398 0.1483 1
0.075 1 0.6597 0.2224 1
0.100 1 0.8795 0.2966 1
0.125 1 1.0994 0.3707 10
0.150 1 1.3193 0.4449 10
0.175 1 1.5392 0.5190 10
0.200 1 1.7591 0.5931 35
0.225 1 1.9789 0.6673 45
0.250 1 2.1988 0.7414 74
0.275 1 2.4187 0.8156 113
0.300 1 2.6386 0.8897 145
0.325 1 2.8585 0.9639 202
0.350 1 3.0784 1.0380 249
0.375 0 3.2982 1.1121 15
0.400 0 3.5181 1.1863 2
0.425 0 3.7380 1.2604 1
0.450 0 3.9579 1.3346 1

Table 4

In contrast to the previous two examples we see from Table 4 that σ estimates reg-
ularity of AI very well, whereas % does not (the reason for behaviour of % and σ for
orthogonal matrices is explained in Rump [21], [22]). The number p initially grows
up to 249, and then p rapidly decreases to one in the case of singularity. Moreover,
we see that comparing this matrix with the matrix of example 3 yields types of ma-
trices where both sufficient regularity conditions largely underestimate the radius of
regularity, whereas our algorithm proves regularity or singularity of AI with moderate
computational costs.

Example 5. The following example is taken from [23]. The center matrix Ac is
defined by

(Ac)ij =





1 if j = i or j = i− 1,
(−1)n+1 if i = 1 and j = n,
0 otherwise

(i, j = 1, . . . , n), and the radius matrix is given by

∆ = κ|Ac|,(8.3)

i.e., the coefficients of the center matrix are relatively perturbed. For this matrix
Rump [24] showed that % underestimates the radius of regularity of AI by a factor
which is equal to the dimension n. This is also demonstrated by the following Table 5
where n = 10.
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κ reg % σ p
0.1 1 1.000 0.639 5
0.2 1 2.000 1.279 53
0.3 1 3.000 1.918 61
0.4 1 4.000 2.557 118
0.5 1 5.000 3.196 118
0.6 1 6.000 3.836 118
0.7 1 7.000 4.475 118
0.8 1 8.000 5.114 118
0.9 1 9.000 5.753 118
1.0 0 10.000 6.393 2
1.1 0 11.000 7.032 1
1.2 0 12.000 7.671 1
1.3 0 13.000 8.310 1
1.4 0 14.000 8.949 1
1.5 0 15.000 9.589 1
1.6 0 16.000 10.228 1
1.7 0 17.000 10.867 1
1.8 0 18.000 11.506 1

Table 5
Moreover, we see that σ also underestimates the radius of regularity. Here p grows
up to 118 which is about n2 in case of regularity, and p ≤ 2 in all cases of singularity.
Changing just one coefficient in the above example to (Ac)1n := n(−1)(n+1), and
defining ∆ again by (8.3), we can see from the following Table 6 that p ≤ 10 whereas
both % and σ underestimate the radius of regularity.

κ reg % σ p
0.1 1 0.714 5.437 4
0.2 1 1.428 10.873 8
0.3 1 2.141 16.310 9
0.4 1 2.855 21.746 10
0.5 1 3.569 27.183 10
0.6 1 4.283 32.619 10
0.7 1 4.997 38.056 10
0.8 1 5.710 43.492 10
0.9 1 6.424 48.929 10
1.0 0 7.138 54.365 1
1.1 0 7.852 59.802 1
1.2 0 8.566 65.238 1
1.3 0 9.279 70.675 1
1.4 0 9.993 76.111 1
1.5 0 10.707 81.548 1
1.6 0 11.421 86.984 1
1.7 0 12.135 92.421 1
1.8 0 12.848 97.857 1

Table 6
Example 6. The center matrix is the 10-dimensional matrix defined by

(Ac)ij =

{
1 if j ≥ i,

−1 if j < i,
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and the radius matrix is

∆ = κ|Ac|.

This example is not typical and it shows a behaviour which is contrary to most of our
observations. As shown in Table 7, p is maximal in case of singularity, and moreover,
in some singularity cases p increases for increasing κ.

κ reg % σ p
0.02 1 0.2000 0.1975 1
0.04 1 0.4000 0.3951 1
0.06 1 0.6000 0.5926 1
0.08 1 0.8000 0.7902 1
0.10 1 1.0000 0.9877 55
0.12 0 1.2000 1.1852 123
0.14 0 1.4000 1.3828 124
0.16 0 1.6000 1.5803 69
0.18 0 1.8000 1.7778 81
0.20 0 2.0000 1.9754 20
0.22 0 2.2000 2.1729 20
0.24 0 2.4000 2.3705 20
0.26 0 2.6000 2.5680 21
0.28 0 2.8000 2.7655 21
0.30 0 3.0000 2.9631 21
0.32 0 3.2000 3.1606 21
0.34 0 3.4000 3.3581 2
0.36 0 3.6000 3.5557 2

Table 7

Example 7. The following example is also not typical for most of our obser-
vations. It shows how the computational costs may change dramatically by altering
slowly the dimension n. The center matrix is given by

(Ac)ij =





10 if i < j,
1 if i = j,

−10 if i > j,

and the radius matrix is

∆ = κ|Ac|.

For n = 7 we get p = 1 and % = σ in all cases (Table 8).
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κ reg % σ p
0.005 1 0.3050 0.3050 1
0.010 1 0.6100 0.6100 1
0.015 1 0.9150 0.9150 1
0.020 0 1.2200 1.2200 1
0.025 0 1.5250 1.5250 1
0.030 0 1.8300 1.8300 1
0.035 0 2.1350 2.1350 1
0.040 0 2.4400 2.4400 1
0.045 0 2.7450 2.7450 1
0.050 0 3.0500 3.0500 1
0.055 0 3.3550 3.3550 1
0.060 0 3.6600 3.6600 1
0.065 0 3.9650 3.9650 1
0.070 0 4.2700 4.2700 1
0.075 0 4.5750 4.5750 1
0.080 0 4.8800 4.8800 1
0.085 0 5.1850 5.1850 1
0.090 0 5.4900 5.4900 1

Table 8
The results for n = 8 are displayed in Table 9.

κ reg % σ p
0.005 1 0.2231 0.1595 1
0.010 1 0.4461 0.3189 3
0.015 1 0.6692 0.4784 5
0.020 1 0.8923 0.6378 5
0.025 1 1.1154 0.7973 10
0.030 1 1.3384 0.9567 10
0.035 1 1.5615 1.1162 10
0.040 0 1.7846 1.2756 1
0.045 0 2.0076 1.4351 1
0.050 0 2.2307 1.5945 1
0.055 0 2.4538 1.7540 1
0.060 0 2.6769 1.9134 1
0.065 0 2.8999 2.0729 1
0.070 0 3.1230 2.2324 1
0.075 0 3.3461 2.3918 1
0.080 0 3.5691 2.5513 1
0.085 0 3.7922 2.7107 1
0.090 0 4.0153 2.8702 1

Table 9
Example 8. This example shows, for varying dimension n, results for interval

matrices where the coefficients are normally distributed with mean 0 and variance
1. In detail, the center matrix is generated by Ac = randn(n), κ = 0.02 · randn(n),
and the radius matrix is given by ∆ = κ · randn(n). Here, rand(n) is the MATLAB
command for the normal random distribution, and for each test set the seed is set to
0. For dimension n = 20, we get
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κ reg % σ p
1.5000e-03 1 2.0127e-01 2.5422e-01 1
3.4675e-03 1 2.5216e-01 2.9794e-01 1
5.7830e-03 1 6.1268e-01 8.9690e-01 10
3.8228e-03 0 4.2597e+00 6.6856e+00 1
2.1062e-02 1 1.1923e+00 1.3357e+00 54
8.0028e-03 0 2.8315e+00 3.9616e+00 1
1.9898e-02 0 2.0265e+00 2.4730e+00 1
5.7956e-03 1 1.0729e+00 1.5084e+00 17
4.6480e-04 1 3.5748e-02 4.7923e-02 1
1.0293e-02 1 9.1469e-01 1.1683e+00 20

Table 10
dimension n = 30 yields

κ reg % σ p
3.2528e-04 1 6.2265e-02 8.6597e-02 1
1.4271e-02 0 1.6529e+00 2.1586e+00 1
1.3444e-02 0 6.4642e+00 9.0395e+00 1
2.9834e-03 1 5.8821e-01 7.7027e-01 2
5.1537e-03 0 1.7320e+00 1.9743e+00 1
3.1523e-02 0 2.0272e+01 3.1276e+01 1
7.6462e-03 1 1.2505e+00 1.8812e+00 446
2.7498e-02 0 6.7397e+00 9.4327e+00 1
4.6382e-03 0 5.7781e+00 8.8484e+00 1
7.9532e-03 0 4.1317e+00 6.6051e+00 1

Table 11
and n = 40 yields

κ reg % σ p
1.0966e-02 0 6.6685e+00 1.0145e+01 1
2.4906e-03 1 3.0435e-01 3.2999e-01 1
1.7104e-03 1 2.6830e-01 2.5902e-01 1
6.5490e-03 0 2.1063e+00 3.3164e+00 1
1.4050e-02 0 2.4355e+00 2.8584e+00 1
1.0242e-02 0 5.6521e+00 8.2005e+00 1
2.4428e-03 0 3.8025e+00 5.4907e+00 1
1.0429e-02 0 2.4616e+00 2.8986e+00 1
4.8682e-03 1 1.0540e+00 1.4246e+00 986
1.5887e-02 0 4.1782e+00 5.8441e+00 1

Table 12
We can see that for most of these randomly generated examples p = 1, and in the
worst cases p is bounded by n2.

9. Concluding remarks. As it could be seen from the examples presented in
the last section, the algorithm proved to be efficient, exhibiting very moderate num-
bers of calls of the linear programming procedure on the average. This behaviour is
to be ascribed to three features: (i) employing a new criterion of Theorem 5.3 which
makes the algorithm not a priori exponential, (ii) using a fast heuristic algorithm for
choosing a proper right-hand side b, and (iii) avoiding unnecessary calls of the linear
programming procedure (Theorem 6.3).
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Nevertheless, the computational work is still large compared to checking simple
sufficient conditions (8.1) or (8.2). Therefore, for practical computations it is rec-
ommendable to use a hybrid algorithm which would first try the sufficient regularity
conditions (8.1), (8.2), the sufficient singularity condition

max
ij

(|A−1
c |∆)ij(|A−1

c |∆)ji ≥ 1

([23], Theorem 6.5) and the algorithm for finding a singular matrix in an interval
matrix [18], and would resort to the actual algorithm of this paper only if all the
previous checks fail. In this way the algorithm can be made even more efficient.
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