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Abstract. Several verifiable sufficient conditions for regularity and singularity of interval ma-
trices are given. As an application, a verifiable sufficient condition is derived for an interval matrix
to have all eigenvalues real.
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1. Introduction. As is well known, an interval matrix

AI = [A, A] = {A; A ≤ A ≤ A}

(where A and A are n × n matrices and the inequalities are understood componen-
twise) is called regular if each A ∈ AI is nonsingular, and is said to be singular
otherwise (i.e., if it contains a singular matrix). Regularity of interval matrices plays
an important role in the theory of linear interval equations (cf. Neumaier [13]), but
it is also important in another respects since several frequently used properties of
interval matrices (as positive definiteness, P -property, stability and Schur stability)
may be verified via checking regularity (see Rohn and Rex [24], Rohn [22]).

The problem of checking regularity of interval matrices has been proved to be
NP-hard (Poljak and Rohn [15], [16], see also Nemirovskii [10]). In its most recent
version [23], the result says that for each rational ε > 0 checking regularity is NP-hard
in the class of interval matrices of the form

[A− εE, A + εE],

where A is a nonnegative symmetric positive definite rational matrix and E is the
matrix of all ones.

In view of this NP-hardness result and of the current status of the complexity
theory (the conjecture “P6=NP”, cf. Garey and Johnson [3]), no easily performable
(i.e., polynomial-time) algorithms for checking regularity of interval matrices may
be expected to exist. In practical computations we must therefore resort to verifiable
sufficient conditions for both regularity and singularity of interval matrices. In order to
cover a possibly wide class of interval matrices, it is recommendable to have more such
conditions at one’s disposal since some sufficient conditions may be better suited for
specific classes of interval matrices than the other ones. Such a situation is well known
for the problem of stability of interval matrices which is also NP-hard (Nemirovskii
[10], Rohn [23]), where a number of sufficient conditions of different types are known,
see the survey paper by Mansour [9].

The purpose of this paper is three-fold. First, we give three sufficient regularity
conditions and three sufficient singularity conditions, grouped into pairs according to
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their form (conditions using midpoint inverse, conditions using eigenvalues and those
based on checking positive definiteness). Two of them (Theorems 3.1 and 4.1) have
been already known, the others are new (Theorems 3.3, 4.2, 5.1 and 5.2). Second, we
show that all these verifiable sufficient conditions can be derived in a rather uniform
way from two necessary and sufficient conditions that themselves are not of practical
use since they require a number of arithmetic operations which is exponential in the
matrix size n. Third, as an application of the previous results we give in Theorem 6.1
a verifiable sufficient condition for an interval matrix to have all eigenvalues real.

We shall use the following notations. The absolute value of a matrix A = (aij)
is denoted by |A| = (|aij |); the same notation applies to vectors as well. %(A) is
the spectral radius of A, and λmin(A), λmax(A) stand for the minimal and maximal
eigenvalue of a symmetric matrix A, respectively. As is well known, λmin(A) =
min‖x‖2=1 xT Ax and λmax(A) = max‖x‖2=1 xT Ax hold for a symmetric matrix A, see
Golub and van Loan [4]. I denotes the unit matrix.

2. Necessary and sufficient conditions. For an interval matrix

AI = [A, A],(2.1)

let us introduce

Ac = 1
2 (A + A)

(the midpoint matrix) and

∆ = 1
2 (A−A)

(the radius matrix). Then we can write (2.1) as

AI = [Ac −∆, Ac + ∆],(2.2)

which form is better suited for formulations of the subsequent conditions.
The first known necessary and sufficient condition for singularity of interval matri-

ces is due to Oettli and Prager. In fact, the formulation given below cannot be found
explicitly in their original paper [14], but it follows easily from the basic theorem on
linear interval equations given there when applied to systems with zero right-hand
sides (see Neumaier [13] or Rohn [20]).

Theorem 2.1. (Oettli and Prager [14]) An interval matrix (2.2) is singular if
and only if the inequality

|Acx| ≤ ∆|x|(2.3)

has a nontrivial solution.
The proof, given e.g. in [20], is constructive: if (2.3) holds for some x 6= 0, then

for the vectors y, z ∈ IRn defined by

yi =

{
(Acx)i/(∆|x|)i if (∆|x|)i 6= 0,
1 if (∆|x|)i = 0

and

zj =

{
1 if xj ≥ 0,

−1 if xj < 0
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(i, j = 1, . . . , n), the matrix A given by

Aij = (Ac)ij − yizj∆ij

(i, j = 1, . . . , n) belongs to AI and is singular (since Ax = 0). Hence, we can construct
a singular matrix in AI if we know a nontrivial solution to (2.3). However, in view of
the NP-hardness result, such a solution is not to be found easily.

The following necessary and sufficient regularity condition employs again the in-
equality of the form (2.3), with the “≤” sign being converted to “>”. We emphasize
that the strict inequality is again meant componentwise.

Theorem 2.2. (Rohn [21]) An interval matrix (2.2) is regular if and only if for
each orthant O of IRn there exists a solution of the inequality

|Acx| > ∆|x|(2.4)

satisfying Acx ∈ O.
Unlike the previous theorem, the proof of this result is more involved and employs

some nontrivial facts concerning the linear complementarity problem, P -matrices and
solvability of linear equations. Again, Theorem 2.2 is of little practical use since it
requires a proof of existence of 2n solutions of the inequality (2.4). However, Theorems
2.1 and 2.2 form a basis for deriving some verifiable sufficient conditions for regularity
and singularity of interval matrices that will be given in the three subsequent sections.

3. Sufficient conditions using the midpoint inverse. Two known sufficient
conditions (given below as Corollary 3.2 and Corollary 3.4) use the midpoint inverse
A−1

c in their formulations. Since using the inverse matrix computed in a finite preci-
sion arithmetic may affect validity of these conditions, it is advantageous to formulate
them in terms of an approximate inverse R instead of the exact inverse A−1

c . The first
such formulation appeared, although implicitly, in Rump’s paper [25]. We reprove
the condition here using another idea based on Theorem 2.1:

Theorem 3.1. Let R be an arbitrary matrix such that

%(|I −RAc|+ |R|∆) < 1(3.1)

holds. Then [Ac −∆, Ac + ∆] is regular.
Proof. Assume to the contrary that [Ac − ∆, Ac + ∆] is singular, so that by

Theorem 2.1 there exists an x 6= 0 satisfying |Acx| ≤ ∆|x|. Then we have

|x| = |(I −RAc)x + RAcx| ≤ |I −RAc| · |x|+ |R| · |Acx|
≤ (|I −RAc|+ |R|∆)|x|,

hence

1 ≤ %(|I −RAc|+ |R|∆)

by Perron-Frobenius theorem (see Neumaier [13], Corollary 3.2.3), a contradiction.

If we take R = A−1
c , we immediately obtain the following result:

Corollary 3.2. Let Ac be nonsingular and

%(|A−1
c |∆) < 1(3.2)

hold. Then [Ac −∆, Ac + ∆] is regular.
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The condition (3.2) was first published by Beeck [2], although allegedly (Neumaier
[12]) its priority is due to Ris who had proved it earlier in his unpublished PhD thesis
[19].

In his recent papers [28], [26], Rump proved that each regular n × n interval
matrix [Ac −∆, Ac + ∆] satisfies

%(|A−1
c |∆) < (3 + 2

√
2)n,

and that for each n ≥ 1 there exists a regular n× n interval matrix such that

%(|A−1
c |∆) > n− 1.

These facts help to clarify the strength of the sufficient condition (3.2).
Since (3.2) is a special case of (3.1) for R = A−1

c , it was believed for some time
that (3.1) is more general than (3.2). Rather surprisingly, it turned out that it is not
so; Rex and Rohn [18] proved that if (3.1) is valid, then Ac is nonsingular and

%(|A−1
c |∆) ≤ %(|I −RAc|+ |R|∆)

holds, hence (3.1) implies (3.2), so that both conditions cover the same class of interval
matrices. This result also shows that the midpoint inverse A−1

c is the best option for
the choice of R. For related results, see Neumaier [11] and Rex [17].

Let us note that the condition (3.2) is verifiable in polynomial time since it is
equivalent to

(I − |A−1
c |∆)−1 ≥ 0

and the inverse matrix can be evaluated in polynomial time by a modified Gaussian
elimination (Bareiss [1]); this statement is of theoretical interest only since efficient
numerical methods for checking (3.2) are available. The same reasoning applies also
to (3.1) provided R is computed in polynomial time.

Next we prove a sufficient singularity condition of a similar type. Let Aj denote
the jth column of a matrix A.

Theorem 3.3. Let there exist a matrix R such that

(I + |I −AcR|)j ≤ (∆|R|)j(3.3)

holds for some j ∈ {1, . . . , n}. Then [Ac −∆, Ac + ∆] is singular.
Proof. The assumption (3.3) implies

|AcRj | = |AcR|j = |I − (I −AcR)|j ≤ Ij + |I −AcR|j
≤ (∆|R|)j = ∆|Rj |,

so that for x := Rj we have

|Acx| ≤ ∆|x|

where x 6= 0 due to (3.3), hence [Ac −∆, Ac + ∆] is singular by Theorem 2.1.
Since the vector x = Rj satisfies (2.3), we may employ the procedure described

after Theorem 2.1 to construct a singular matrix contained in [Ac−∆, Ac+∆]. Setting
R = A−1

c , we immediately obtain as a special case a result from [20]:
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Corollary 3.4. Let Ac be nonsingular and let

max
j

(∆|A−1
c |)jj ≥ 1(3.4)

hold. Then [Ac −∆, Ac + ∆] is singular.
Proof. Let j be the index for which (∆|A−1

c |)jj ≥ 1. Then (3.3) holds with
R = A−1

c , and Theorem 3.3 applies.
During the time this paper was in reviewing process, Rump published a general-

ization of the condition (3.4): if

max
ij

(∆|A−1
c |)ij(∆|A−1

c |)ji ≥ 1(3.5)

holds, then [Ac −∆, Ac + ∆] is singular [27, Thm. 6.5]. Obviously, (3.4) is a special
case of (3.5) for i = j.

4. Sufficient conditions using eigenvalues. If Ac is nearly singular, then the
conditions using approximate midpoint inverse may turn ineffective. Rump [26] was
the first to derive a condition where no inverse matrix computation is required, at the
expense of necessity to evaluate eigenvalues. Here we reprove his result by another
means:

Theorem 4.1. Let

λmax(∆T ∆) < λmin(AT
c Ac)(4.1)

hold. Then [Ac −∆, Ac + ∆] is regular.
Proof. Assume to the contrary that [Ac −∆, Ac + ∆] is singular, so that

|Acx| ≤ ∆|x|
holds for some x 6= 0, which may be normalized to achieve ‖x‖2 = 1. Then we have

λmin(AT
c Ac) ≤ xT AT

c Acx ≤ |Acx|T |Acx| ≤ (∆|x|)T (∆|x|)
= |x|T ∆T ∆|x| ≤ λmax(∆T ∆),

which contradicts (4.1).
Let us note that the matrices AT

c Ac and ∆T ∆ are symmetric, hence their eigen-
values appearing in (4.1) are real. Rump [29] and independently Vacek [30] found
counterexamples demonstrating that neither of the conditions (3.2), (4.1) is a conse-
quence of the other one.

The above result employed Theorem 2.1; using Theorem 2.2, we arrive at a suffi-
cient singularity condition formulated in similar terms:

Theorem 4.2. Let

λmax(AT
c Ac) ≤ λmin(∆T ∆)(4.2)

hold. Then [Ac −∆, Ac + ∆] is singular.
Proof. Assume to the contrary that [Ac −∆, Ac + ∆] is regular. Then according

to Theorem 2.2, applied to the nonnegative orthant O, there exists an x satisfying

Acx > ∆|x|,
which can be normalized so that ‖x‖2 = 1. Then we have

λmax(AT
c Ac) ≥ xT AT

c Acx > |x|T ∆T ∆|x| ≥ λmin(∆T ∆)

contrary to (4.2).
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5. Sufficient conditions using positive definiteness. The necessity of evalu-
ating eigenvalues in Theorems 4.1 and 4.2 may be avoided if we use instead a positive
definiteness check. Let us recall that a symmetric matrix A (it will be seen that
symmetry poses no restriction here) is positive definite if and only if all its leading
principal minors are positive (Sylvester determinant criterion, see Wilkinson [31]).
Since positivity of all leading principal minors may be checked by employing a mod-
ified Gaussian elimination which is performable in polynomial time (Bareiss [1]), we
can see that checking positive definiteness of symmetric matrices may be performed
by a polynomial-time algorithm. This is the advantage of criteria presented in this
section; their disadvantage consists in the fact that they require evaluation of AT

c Ac

(or ∆T ∆), which squares the condition number.
Theorem 5.1. Let the matrix

AT
c Ac − ‖∆T ∆‖I(5.1)

be positive definite for some consistent matrix norm ‖ · ‖. Then [Ac −∆, Ac + ∆] is
regular.

Proof. As in the proof of Theorem 4.1, assuming to the contrary that [Ac −
∆, Ac + ∆] is singular, we may assure existence of an x with ‖x‖2 = 1 satisfying

xT AT
c Acx ≤ |x|T ∆T ∆|x| ≤ λmax(∆T ∆) = %(∆T ∆) ≤ ‖∆T ∆‖ = ‖∆T ∆‖(xT x),

hence

xT (AT
c Ac − ‖∆T ∆‖I)x ≤ 0,

which means that the matrix (5.1) is not positive definite, a contradiction.
Notice that the matrix (5.1) is symmetric, which justifies the discussion made at

the beginning of this section. Since ‖∆T ∆‖ ≤ ‖∆T ‖ · ‖∆‖, Theorem 5.1 will remain
valid if we replace (5.1) by the matrix

AT
c Ac − ‖∆T ‖ · ‖∆‖I,

which yields a weaker result where, however, ∆T ∆ need not be computed. We note
that any of the usual matrix norms ‖ · ‖1, ‖ · ‖2, ‖ · ‖∞ and ‖ · ‖F is consistent [5] and
may be employed in Theorem 5.1. The theorem will not stay in force if the matrix
(5.1) is replaced by

AT
c Ac −∆T ∆.

Indeed, for

Ac =

(
1 4
4 1

)
, ∆ =

(
2 2
2 2

)
,

the matrix AT
c Ac −∆T ∆ = 9I is positive definite, but [Ac −∆, Ac + ∆] contains the

singular matrix
(

3 3
3 3

)

(Rump [29]). Finally, we formulate in similar terms a sufficient singularity condition:
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Theorem 5.2. Let the matrix

∆T ∆−AT
c Ac(5.2)

be positive semidefinite. Then [Ac −∆, Ac + ∆] is singular.
Proof. Assume to the contrary that [Ac −∆, Ac + ∆] is regular. Then Theorem

2.2 (applied to the nonnegative orthant) implies existence of an x 6= 0 satisfying

Acx > ∆|x|
and henceforth also

xT AT
c Acx > |x|T ∆T ∆|x| ≥ xT ∆T ∆x,

which means that

xT (∆T ∆−AT
c Ac)x < 0

and the matrix (5.2) is not positive semidefinite, which contradicts the assumption.

6. Application: Condition for an interval matrix to have real eigenval-
ues only. As an application of the above results, different from those mentioned in
the introduction, we shall consider the problem of checking that each A ∈ AI has real
eigenvalues only. The single reference on this problem known to us is the paper by
Hollot and Bartlett [6]; the necessary and sufficient condition given there, however, is
not of practical use since it is exponential in the matrix size. We have this verifiable
sufficient condition:

Theorem 6.1. Let Ac have n simple real eigenvalues

λ1(Ac) < λ2(Ac) < . . . < λn(Ac)

and let there exist real numbers µ0, . . . , µn satisfying

µ0 < λ1(Ac) < µ1 < λ2(Ac) < µ2 < . . . < λn(Ac) < µn(6.1)

such that the interval matrix

[Ac − µjI −∆, Ac − µjI + ∆](6.2)

is regular for j = 0, . . . , n. Then each A ∈ AI has n simple real eigenvalues satisfying

µ0 < λ1(A) < µ1 < λ2(A) < µ2 < . . . < λn(A) < µn.(6.3)

Proof. For an A ∈ AI , let

p(λ) = det(A− λI)

denote its characteristic polynomial and let

pc(λ) = det(Ac − λI)

be the characteristic polynomial of Ac. Then for each j ∈ {0, . . . , n} we have |(A −
µjI)− (Ac − µjI)| = |A−Ac| ≤ ∆, hence

A− µjI ∈ [Ac − µjI −∆, Ac − µjI + ∆],
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and regularity of (6.2) implies

p(µj)pc(µj) > 0(6.4)

since p(µj)pc(µj) ≤ 0 would imply, by continuity of the determinant, existence of a
singular matrix in (6.2), a contradiction. Now, since all eigenvalues of Ac are real and
simple, (6.1) gives

pc(µj)pc(µj+1) < 0(6.5)

for j = 0, . . . , n− 1. For each such j we have from (6.4)

p(µj)pc(µj)p(µj+1)pc(µj+1) > 0,

which in view of (6.5) implies

p(µj)p(µj+1) < 0,

hence the characteristic polynomial of A has a root in each of the open intervals
(µj , µj+1), j = 0, . . . , n− 1. This proves that A has exactly n simple real eigenvalues
satisfying (6.3).

Regularity of the interval matrix (6.2) may be checked by any of the sufficient
regularity conditions presented above. Theorem 5.1 seems to be particularly suited
here since it requires checking positive definiteness of the matrices

(Ac − µjI)T (Ac − µjI)− ‖∆T ∆‖I = AT
c Ac − µj(AT

c + Ac) + (µ2
j − ‖∆T ∆‖)I

that may be easily updated for different values of µj .

7. Concluding remarks. In a very recent development, Jansson [7] proposed
a necessary and sufficient regularity condition, based on a quite different idea, which
is not a priori exponential (an exponential growth occurs only at worst-case-type
examples). Computational results reported in [8] look promising: interval matrices
up to the size n = 50 were checked in acceptable time. Nevertheless, in view of the
NP-hardness result and of the famous conjecture “P6=NP” (see Garey and Johnson [3]
for details) there remains only very little hope that necessary and sufficient regularity
conditions verifiable in polynomial time might be found.
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