
Computational Complexity of Interval
Algebraic Problems:

Some Are Feasible And Some Are
Computationally Intractable:

A Survey

Vladik Kreinovich, Anatoly Lakeyev, and Jǐŕı Rohn

0 Introduction

One of the Basic Problems of Interval Computations

One of the basic problems of interval computations is as follows: given a function
f(x1, ..., xn) of n real variables, and n intervals xi, compute the range

y = f(x1, ..., xn) = {f(x1, ..., xn) |x1 ∈ x1, ..., xn ∈ xn}.
Usually, these intervals xi have rational endpoints.

A typical application of this problem is as follows: from the measurements, we know
the approximate values x̃i of physical quantities xi, and we know the guaranteed
accuracy ∆i of each measurement. As a result, we know that xi belongs to the interval
xi = [x̃i −∆i, x̃i + ∆i]. We also know the algorithm f that transforms the values xi

into the value of the desired quantity y. We want to know the set of possible values
of y. For a continuous function f , this set is an interval (we will denote it by y). So,
the question is: can we compute endpoints y± of this interval y in reasonable time?

Let Us Describe This Problem in Precise Terms

To describe this problem in precise terms, first, we must explain what we mean by
“computing the endpoints”. If the endpoints are rational numbers, then we want to
compute the explicit expressions for these points; if they are not rational numbers,
then we may be interested, e.g., in computing ε−close rational approximations to the
desired endpoints (for a given ε > 0).

Second, we must fix the class of functions f . If the function f itself is difficult to com-
pute, then it is difficult to compute the endpoints of the interval y even for degenerate
input intervals xi = [xi, xi]. To avoid this situation, in this paper, we will restrict

2 Vladik Kreinovich, Anatoly Lakeyev, and Jǐŕı Rohn

ourselves to the simplest possible functions: functions that can be obtained by finitely
many applications of arithmetic operations +, −, ∗, and /, i.e., to rational functions.

For Rational Functions, There is a General Algorithm, but This
Algorithm Is Not Practical

For rational functions, the problem of computing the endpoints is, in principle, al-
gorithmically solvable: namely, we can apply the so-called Tarski’s algorithm [20].
However, this algorithm takes too long [1]: it sometimes take time ≈ 22n

for an input
of size n. As a result, even for small n, it may take billions of years. This is not a
practical solution.

So, the question is: is there a practically useful (feasible) algorithm to solve our basic
problem?

Let Us Define “Feasible”

To describe this question in precise terms, we must formalize what “feasible” means.
This problem has been studied in theoretical computer science; no completely satisfac-
tory definition has yet been proposed. The best known formalization is: an algorithm
U is feasible iff it is polynomial time, i.e., iff there exists a polynomial P such that for
every input x, the running time tU (x) of the algorithm U on the input x is bounded
by P (|x|) (here, |x| denotes the length of the input x). This definition is not perfect,
because there are algorithms that are polynomial time but that require billions of years
to compute (we will see an example below), and there are algorithms that require in
a few cases exponential time but that are, in general, very practical. However, this is
the best definition we have so far.

For many mathematical problems, it is not yet known (1995) whether these problems
can be solved in polynomial time or not. However, it is known that some combinatorial
problems are as tough as possible, in the sense that if we can solve this problem in
polynomial time, then, crudely speaking, we can solve all combinatorial problems in
polynomial time. Such problems are called NP-hard, and the majority of computer
scientists believe that these problems are not feasible. For that reason, NP-hard
problems are also called intractable. For formal definitions and detailed descriptions,
see, e.g., [4].

In these terms, we can reformulate our question as follows: is the basic problem of
interval computations (described above) feasible or intractable?

Computational Complexity of Interval Algebraic Problems 3

1 Polynomials: First Negative Result,
and Where We Go From There

First Negative Result

In 1981, Gaganov proved that our problem is intractable even if we consider polyno-
mials only:

Theorem. (Gaganov) [2, 3] The basic problem of interval computations is NP-hard
even if we restrict ourselves to polynomial functions f , and to such inputs for which
the output interval y has rational endpoints.

Three Restrictions Behind This Result

This result means that there is no hope to find a feasible algorithm that computes the
interval y (1) exactly, (2) for all polynomials f , and (3) for all input intervals [x−i , x+

i].
What if we relax some of these restrictions?

First Try

Let us first relax the first restriction, and ask for an algorithm that computes the
endpoint with a given accuracy ε (i.e., that computes the values ỹ± for which
|y+ − ỹ+| ≤ ε and |y− − ỹ−| ≤ ε). Alas, the resulting problem is still NP-hard:

Theorem 1. For every ε > 0, the problem of computing ε−approximations ỹ± to the
endpoints y± of the range f([x−1 , x+

1], ..., [x−n , x+
n]) for a given polynomial f and for

given intervals [x−i , x+
i] is NP-hard.

Comment. In this survey, we only give the formulations of the results. The proofs of
these and related results will appear in our forthcoming book [12]. This book will also
give a more comprehensive bibliography of the subject.

Second Try

Computing the range for narrow intervals only is still NP-hard:

Theorem 2. For every δ > 0, the problem of computing the endpoints y± of the range
f([x−1 , x+

1], ..., [x−n , x+
n]) for a given polynomial f and for given intervals [x−i , x+

i] of
width ≤ δ is NP-hard.

4 Vladik Kreinovich, Anatoly Lakeyev, and Jǐŕı Rohn

Third Try

Relaxing the third restriction means that we compute the range not for all possible
polynomials, but only for some (“simplest”) ones. What does “simple” mean? A
polynomial is simple if, first, it has few variables and, second, if its degree is small.
Let us try both restrictions.

Polynomials With a Fixed Number of Variables: Good News

Theorem 3. For every n, there exists a polynomial time algorithm that computes the
endpoints of the range f([x−1 , x+

1], ..., [x−n , x+
n]) for any polynomial f with n variables.

This result follows from an algorithm proposed by Grigor’ev et al [5]. Here, each
endpoint can be proved to be an algebraic number (i.e., a root r of a polynomial P (y)
with integer coefficients), so this algorithm actually computes the coefficients of the
corresponding polynomial P (y). ¿From these coefficients, for a given ε > 0, we can
compute the ε−approximation to the root very fast. This result is true not only for
rational functions, but also for algebraic functions (i.e., roots of polynomials equations
with polynomial coefficients; e.g., f(x) =

√
x2 + 1 is a solution of the equation y2 −

(x2 + 1) = 0).

Polynomials With a Fixed Number of Variables: Bad News

As shown in [6], Grigor’ev algorithm is an example of an algorithm that is polynomial
time but that is not in any way practically feasible: for polynomials of only four
variables, it can take millions of years to compute, even on the fastest computers.

So, restricting the number of variables does not help much. Let us try our luck with
restricting the degree.

Polynomials of Fixed Degree

When degree is 1, we get linear functions. For linear functions f , the problem is clearly
feasible: if f(x1, ..., xn) = a0 +

∑
aixi, then y± = ỹ ±∆, where ỹ = f(x̃1, ..., x̃n) and

∆ =
∑ |ai|∆i.

The next step is quadratic functions. Alas, for quadratic functions, the problem is
already NP-hard (Rohn, 1994):

Theorem 4. The problem of computing the endpoints y± of the range
f([x−1 , x+

1], ..., [x−n , x+
n]) for a given quadratic polynomial f(x1, ..., xn) = a0 +

∑
aixi +∑

aijxixj and for given intervals [x−i , x+
i] is NP-hard.

We cannot have a feasible algorithm for all quadratic polynomials, but maybe, we can
have an algorithm for some of them? There are two cases when this problem is feasible

Computational Complexity of Interval Algebraic Problems 5

for quadratic functions f : one case is when f is actually linear, and another is when
the matrix ‖aij‖ is diagonal:

Theorem 5. There exists a polynomial time algorithm that computes the endpoints y±

of the range f([x−1 , x+
1], ..., [x−n , x+

n]) for a given quadratic polynomial f(x1, ..., xn) =
a0 +

∑
aixi +

∑
aiix

2
i and for given intervals [x−i , x+

i].

Both cases are very specific, but maybe, if we take close cases, we will still get a
class for which feasible algorithms are known? Alas, the answer is negative: for all
non-trivial generalizations of the above degenerate classes that we tried, the resulting
problem is NP-hard:

1) A diagonal matrix is a matrix aij for which aij = 0 for i 6= j, i.e., for |i − j| ≥ 1.
The first natural generalization of a diagonal matrix is a w−band matrix, for which
aij = 0 for |i− j| ≥ w for some w > 1.

Theorem 6. For w ≥ 3, the problem of computing the endpoints y± of the range
f([x−1 , x+

1], ..., [x−n , x+
n]) for a given quadratic polynomial f(x1, ..., xn) = a0 +

∑
aixi +∑

aijxixj with a w−band matrix aij and for given intervals [x−i , x+
i] is NP-hard.

2) Another possibility is to generalize one particular case of a diagonal matrix: a scalar
matrix, for which aii = const. These matrices can be characterized by the condition
that all their eigenvalues λi are equal: λ1 = ... = λn = λ for some number λ. A
natural generalization is the notion of an almost scalar matrix, i.e., a matrix for which
all but one eigenvalues coincide.

Theorem 7. The problem of computing the endpoints y± of the range
f([x−1 , x+

1], ..., [x−n , x+
n]) for a given quadratic polynomial f(x1, ..., xn) = a0 +

∑
aixi +∑

aijxixj with an almost scalar matrix aij and for given intervals [x−i , x+
i] is NP-hard.

3) The third generalization is a generalization of linear functions. A natural general-
ization is the notion of a bilinear function, i.e., a quadratic function for which aii = 0
for all i.

Theorem 8. The problem of computing the endpoints y± of the range
f([x−1 , x+

1], ..., [x−n , x+
n]) for a given bilinear polynomial f(x1, ..., xn) = a0 +

∑
aixi +∑

aijxixj and for given intervals [x−i , x+
i] is NP-hard.

Comment. Basically, the problem is feasible only for linear and slightly non-linear
functions. As soon as we add one more multiplication and consider quadratic functions,
the problem becomes NP-hard. At first glance, it may seem like we are doomed to NP-
hardness results: only linear functions lead to feasible problems. However, it turns
out that if instead of multiplication we add division (seemingly more complicated
operation), and consider fractionally linear functions, we get a feasible algorithm!

6 Vladik Kreinovich, Anatoly Lakeyev, and Jǐŕı Rohn

2 Fractionally Linear Functions:
The Problem is Feasible

Theorem 9. [14] There exists a polynomial time algorithm that computes the end-
points y± of the range f([x−1 , x+

1], ..., [x−n , x+
n]) for a given fractionally linear function

f(x1, ..., xn) =
a0 +

∑
aixi

b0 +
∑

bixi

and for given intervals [x−i , x+
i].

Comment. The corresponding algorithm is very practical; it is actually used in con-
trol applications. It is therefore natural to try to generalize it. Alas, all non-trivial
generalizations that we have tried so far lead to NP-hard problems:

3 Linear Interval Systems:
A Natural Generalization of
Fractionally Linear Functions

Motivations of the Following Definition

A fractionally linear function f(x1, ..., xn) can be defined as a solution of a linear
equation (b0 +

∑
bixi)f = a0 +

∑
aixi. The problem of finding the range of f is thus

equivalent to finding the set of all possible solutions of this equation when xi take the
values in their respective intervals.

A natural generalization is, therefore, the solution of a system of linear equations∑
aijfj = bi, where the coefficients aij and bi are linear functions of the variables

that are defined with interval uncertainty. It turns out that this problem is NP-hard
even in the simplest case when each of the coefficients aij , bi depends on only one
interval-valued variable, and therefore, each of these coefficients can take any value
from its corresponding interval irrespective of the values of the other coefficients.

As a result, we arrive at the following problem:

Formulation of the Problem

Given the intervals aij and bi and an integer j, compute the endpoints of the range
of possible values of fj (i.e., values for which for some values f1, ..., fj−1, fj+1, ..., fn,
we have

∑
aijfj = bi for some aij ∈ aij and bi ∈ bi).

Alas, this problem is NP-hard.

Computational Complexity of Interval Algebraic Problems 7

A Little Bit of History

• There exist many algorithms for solving interval linear equations; the algorithms
that compute the precise range sometimes take an exponentially long time. This
fact lead to the suspicion that the problem of computing the exact range is not
feasible.

• The first NP-hardness result for this problem was proved by Lakeyev et al in
1993 [10]: the problem of computing the bounds exactly for arbitrary rectangular
(not necessarily square) matrices is NP-hard.

• Later in 1993, for arbitrary rectangular matrices, it was shown that the problem
of estimating the range with a given accuracy ε > 0 is also NP-hard [11].

• In 1994, Rohn et al. have proved [19] that the problem of computing the bounds
exactly is NP-hard even for square regular matrices (regular means that every
matrix aij ∈ aij is regular).

• On hearing about these two results, A. Neumaier suggested that the problem of
computing the bounds with a given accuracy is NP-hard even for square regular
matrices. This hypothesis was proven correct in 1995 [18, 9].

• Finally, it has been recently proved that for every ε > 0 and δ > 0, the problem
of computing the bounds with an accuracy ε for square regular interval matrices
made of intervals of width ≤ δ is also NP-hard (Kahl, 1995, unpublished; the
proof will appear in [12]).

Comment. The situation is not so gloomy as it may seem:

• For a different notion of a solution to a linear interval equation, there is a poly-
nomial time algorithm that solves it: namely, if we consider fj a solution iff∑

aijfj ∈ bi for all aij ∈ aij . This type of a solution has a direct application
to economics: if bi is the desired consumption of i−th item, and aij describes
how much item of j−th type is used to produce i−th product, then fj is the
production that guarantees the given consumption levels (for details, see, e.g.,
Rohn [15, 16, 17]).

• And even for the cases when the problem is NP-hard, this NP-hardness has a
bright side in it:

8 Vladik Kreinovich, Anatoly Lakeyev, and Jǐŕı Rohn

4 Bright Side of NP-Hardness

NP-Hard Means That Good Interval Heuristics Can Solve Other
Hard Problems

By definition, the fact that a problem P is NP-hard means, as we have mentioned,
that if we can solve the problem P is polynomial time, then we will be able to solve
many other hard problems in polynomial time. Based on this reduction, the majority
of computer scientists believe that there is algorithm that solves all instances of the
problem P. But this does not prevent us from having good heuristics that solve many
instances of P. The reduction mentioned above means that we can then solve many
cases of other hard problems.

For interval computations, many good heuristics are indeed known. In Traylor et al.
[21], it is shown that these heuristics lead to good heuristic algorithms for solving
another NP-hard problem: propositional satisfiability problem.

Freedom of Will

According to traditional physical formalisms, if we know the initial state of the world,
then we can uniquely determine the state of the world at any future moment of time.
This is not an abstract possibility: physical equations usually lead to reasonably effi-
cient predictions.

This determinism flies in the face of freedom of will, i.e., of the fact that we humans
feel ourselves capable of making free decisions that are not uniquely pre-determined.

At first glance, there seems to be a contradiction, and philosophers have been viewing
it as a one. However, this contradiction between physics and freedom of will almost
disappears if we take into consideration that we never know the initial state of the world
precisely: we get this state from measurements, and measurements are never absolutely
precise. So, instead of knowing the exact values of the parameters of the initial state,
we only know intervals of possible values of these parameters. For intervals, as we
have seen, the problem of computing the exact range is NP-hard, and therefore, it is
not possible to predict the future state. This impossibility leaves room for freedom of
will.

Computational Complexity of Interval Algebraic Problems 9

5 What Does NP-Hardness Mean
in Practical Terms?
Are Interval Computations Really Intractable?

NP-Hardness Reformulated in Practical Terms

Ideally, in the basic problem considered above, we would like to compute the exact
range interval of the function y = f(x1, ..., xn). Traditional methods of interval com-
putations do not always give the exact range, but they usually give an enclosure to the
desired range, i.e., an interval that contains the range y. The result that computing
the exact range is NP-hard means, crudely speaking, that there is no feasible (polyno-
mial time) algorithm that can always compute the exact range. In other words, every
enclosure-computing feasible algorithm sometimes overestimates.

The natural question is: how often is that “sometimes”?

Two Possibilities: Pessimistic and Optimistic

There are two possible scenarios here:

• a pessimistic one: many particular cases are hard, so, every feasible algorithm
overestimates in almost all cases;

• an optimistic one: a few cases are hard, but the vast majority are feasible.

Our Result

Th existign algorithms almost always overestimate, so, we may be inclined to conclude
that we are in pessimistic situation. However, it turns out that we are in the opti-
mistic situation: for small input intervals, almost all interval computation problems
are feasible. This result was proven in [13]. To formulate it in precise terms, we need
the following definition:

Definition.

• Let us assume that ε > 0 is a real number, D ⊆ Rn is a compact domain
with a positive Lebesque measure µ(D) > 0, and P (x) is a property that is
true for some points x ∈ D. We say that P is true for (D, ε)−almost all x if
µ({x ∈ D | ¬P (x)}) ≤ ε · µ(D).

• We say that an algorithm U for solving the basic problem is almost always exact
for narrow input intervals if for every compact domain D with µ(D) > 0, for
every rational function f with rational coefficients that if finite on an open set

10 Vladik Kreinovich, Anatoly Lakeyev, and Jǐŕı Rohn

N ⊃ D, and for every ε > 0, there exists a δ > 0 such that for (D, ε)−almost
all x̃1, ..., x̃n, if all n input intervals are δ−narrow (∆i ≤ δ), the algorithm U
returns the exact endpoints of the interval f(x1, ..., xn).

Theorem 10. There exists a polynomial-time algorithm U that, given n intervals
xi = [x̃i−∆i, x̃i + ∆i], and a rational function f with rational coefficients, returns an
enclosure for f(x1, ..., xn), and that is almost always exact for narrow intervals.

Comment. A similar result shows that solving linear interval equations is almost
always easy for narrow interval inputs (for details, see [13]).

6 Other Problems
in Which Interval Computations are Used,
And Their Computational Complexity

Optimization

The simplest optimization problem has the form f(x1, ..., xn) → max for xi ∈ [x−i , x+
i].

This is an example of a range problem, so, from the fact that computing the range is
NP-hard, we can easily deduce that the optimization problem is NP-hard for quadratic,
bilinear, etc. functions f .

Unbounded Optimization

Unbounded optimization often occurs in theoretical physics, where even equations are
often formulated in terms of a variational principle of the type S =

∫
L d4x → min.

The complexity of unbounded optimization problem f(x1, ..., xn) → min is different
from the complexity of bounded optimization:

Theorem 11.

• Bounded optimization is feasible for linear functions f and NP-hard for quadratic
and higher degree polynomials f .

• Unbounded optimization is feasible for linear, quadratic, and cubic polynomials,
and is NP-hard for polynomials of degree ≥ 4.

Solving Equations

If we were able to check in polynomial time where a given polynomial equation
f(x1, ..., xn) = c is solvable, then, we would be able, by using bisection, to approx-
imate the endpoints of the range of f in polynomial time. Since approixmating the

Computational Complexity of Interval Algebraic Problems 11

endpoints of the range is NP-hard, checking whether an equation is solvable is thus
also NP-hard.

If we do not restrict the range of possible solutions, then we can prove not only that this
problem is NP-hard, but that it actually requires exponential time: e.g., for a system
x1 = 2, x2 = x2

1, x3 = x2
2, . . ., xn = x2

n−1, the only possible solution is xn = x2n

1 = 22n

.
In binary terms, it means 1 followed by 2n zeros. We need exponential time just to
write this answer down, so solving systems of polynomials equations is intractable.

7 Ellipsoid Uncertainty

One Reason Why the Problem is Hard
for Interval Computations

For a smooth function f(x) of one variable x, it is usually easy to find a maximum
on a given interval [a, b]: this maximum is attained either inside the interval, in which
case it is a zero of the derivative f ′(x) = 0, or at one of the endpoints (a or b). A
similar result is true if we look for a maximum of a function f of n variables inside
a box x1 × ...xn: this maximum is either inside the box, or on one of its faces. The
only problem now is that we have 2n possible faces, so this approach leads to an
exponentially long (thus, non-feasible) algorithm.

Uncertainty is Often Described by an Ellipsoid,
and for Ellipsoids, This Argument Does not Seem to Work

In many cases, there is a dependency between the variables xi. As a result, the set of
possible values of x = (x1, ..., xn) is described not by a box, but, e.g., by an ellipsoid
E. An ellipsoid does not have many different faces, so, it may seem at first glance that
for ellipsoids, the basic problem is feasible. Alas, no.

Theorem 12. [8] The problem of computing the endpoints of the range f(E) of a
given polynomial function f(x1, ..., xn) for a given ellipsoid E ⊆ Rn is NP-hard.

8 Statistical and Interval Computations

In many real-life cases, in addition to intervals of possible values of xi, we know
the probabilities of different values of xi. Most frequently, the “measurement errors”
∆xi = x̃i − xi are independent Gaussian random variables with 0 average and known
standard deviations σi. In this case, the natural problem is: to compute the standard
deviation σ[y] of y = f(x1, ..., xn) = f(x̃1 − ∆x1, ..., x̃n − ∆xn). We will call this

12 Vladik Kreinovich, Anatoly Lakeyev, and Jǐŕı Rohn

problem the basic problem of statistical computations. It turns out that this problem
is computationally easier than the basic problem of interval computations [7]:

Theorem 13.

• For linear functions f , both interval and statistical computation problems are
feasible.

• For polynomial functions f , interval computations are NP-hard, and statistical
computations are feasible.

• For rational functions f , both interval and statistical computations are NP-hard.

Corollary. Interval computations are harder than statistical ones.

Acknowledgments. This work was partially supported by NSF Grants No. CDA-
9015006 and EEC-9322370, NASA Grant No. NAG 9-757, grant GACR 201/95/1484,
and by a grant from the German Science Foundation. The authors are greatly thankful
to Gerhard Heindl, Hoon Hong, R. Baker Kearfott, Werner Krandick, Wolfram Luther,
Arnold Neumaier, Sergey Shary, Yuri Shokin, Jürgen Wolff von Gudenberg, and to all
participants of SCAN’95 for the attention to this work and for valuable discussions.

References

[1] J. H. Davenport, J. Heintz, “Real quantifier elimination is doubly exponential”,
Journal of Symbolic Computations, 1988, Vol. 5, No. 1/2, pp. 29–35.

[2] A. A. Gaganov, Computational complexity of the range of the polynomial in sev-
eral variables, Leningrad University, Math. Department, M.S. Thesis, 1981 (in
Russian).

[3] A. A. Gaganov, “Computational complexity of the range of the polynomial in
several variables”, Cybernetics, 1985, pp. 418–421.

[4] M. E. Garey and D. S. Johnson, Computers and intractability: a guide to the
theory of NP-completeness, Freeman, San Francisco, 1979.

[5] D. Yu. Grigor’ev and N. N. Vorobjov (Jr.), “Solving systems of polynomial in-
equalities in subexponential time”, Journal of Symbolic Computation, 1988, Vol.
5, No. 1/2, pp. 37–64.

[6] J. Heintz, M.-F. Roy, and P. Solerno, “On the theoretical and practical complexity
of the existential theory of reals”, The Computer Journal, 1993, Vol. 36, No. 5.

[7] O. Kosheleva and V. Kreinovich, Interval computations are harder than statistical
computations, University of Texas at El Paso, Department of Computer Science,
Technical Report UTEP-CS-94-19, July 1994; available by ftp from cs.utep.edu,

Computational Complexity of Interval Algebraic Problems 13

login anonymous, file pub/reports/tr94-19.tex; submitted to Reliable Comput-
ing.

[8] V. Kreinovich, Ellipsoid computations are intractable even for polynomials, Uni-
versity of Texas at El Paso, Department of Computer Science, Technical Report
UTEP-CS-93-53a, August 1993 (updated December 1993); available by ftp from
cs.utep.edu, login anonymous, file pub/reports/tr93-53a.tex.

[9] V. Kreinovich and A. V. Lakeyev, Linear Interval Equations: Computing Enclo-
sures with Bounded Relative Or Absolute Overestimation is NP-Hard, University
of Texas at El Paso, Department of Computer Science, Technical Report UTEP-
CS-95-27, July 1995; available by ftp from cs.utep.edu, login anonymous, file
pub/reports/tr95-27.tex; submitted to Reliable Computing.

[10] V. Kreinovich, A. V. Lakeyev, and S. I. Noskov. “Optimal solution of interval
linear systems is intractable (NP-hard).” Interval Computations, 1993, No. 1, pp.
6–14.

[11] V. Kreinovich, A. V. Lakeyev, S. I. Noskov, “Approximate linear algebra is in-
tractable”, Lin. Alg. Appls., 1995 (to appear).

[12] V. Kreinovich, A. Lakeyev, J. Rohn, and P. Kahl, Feasible? Intractable? On
computational complexity of data processing and interval computations, Kluwer
Academic Press, 1996 (to appear).

[13] A. V. Lakeyev and V. Kreinovich, “If Input Intervals Are Small Enough, Then
Interval Computations Are Almost Always Easy”, Reliable Computing, 1995, Sup-
plement (Extended Abstracts of APIC’95: International Workshop on Applica-
tions of Interval Computations, El Paso, TX, Febr. 23–25, 1995), pp. 134–139.

[14] R. Lea, V. Kreinovich, and R. Trejo, “Optimal interval enclosures for fractionally-
linear functions, and their application to intelligent control”, Reliable Computing,
1996, Vol. 2, No. 2 (to appear).

[15] J. Rohn, Input-output planning with inexact data, Freiburg Intervall Berichte,
1978, Vol. 9.

[16] J. Rohn, Correction of coefficients of the input-output model, Z. Angew. Math.
Mech., 1978, Vol. 58, pp. T494–T495.

[17] J. Rohn, Input-output model with interval data, Econometrica, 1980, Vol. 48, No.
3, pp. 767–769.

[18] J. Rohn, “Linear Interval Equations: Computing Enclosures with Bounded Rel-
ative Overestimation is NP-Hard”, In: R. B. Kearfott and V. Kreinovich (eds.),
Applications of Interval Computations, Kluwer, Boston, MA, 1996 (to appear).

14 Vladik Kreinovich, Anatoly Lakeyev, and Jǐŕı Rohn

[19] J. Rohn and V. Kreinovich, “Computing exact componentwise bounds on solu-
tions of linear systems with interval data is NP-hard,” SIAM Journal on Matrix
Analysis and Applications (SIMAX), 1995, Vol. 16, pp. 415–420.

[20] A. Tarski, A decision method for elementary algebra and geometry, 2nd ed., Berke-
ley and Los Angeles, 1951.

[21] B. Traylor and V. Kreinovich, “A bright side of NP-hardness of interval compu-
tations: interval heuristics applied to NP-problems”, Reliable Computing, 1995,
Vol. 1, No. 3, pp. 343–360.

Addresses:

V. Kreinovich, Department of Computer Science, University of Texas at El Paso,
El Paso, TX 79968, USA, E-mail vladik@cs.utep.edu.

A. V. Lakeyev, Irkutsk Computing Center, Russian Academy of Science,
Siberian Branch, Lermontov Str. 134, Irkutsk 664033, Russia, E-mail
lakeyev@icc.ccsoan.irkutsk.su.

J. Rohn, Faculty of Mathematics and Physics, Charles University, Malostranské
nám. 25, 118 00 Prague, Czech Republic, and Institute of Computer Science,
Academy of Sciences, Pod vodárenskou věž́ı 2, 182 07 Prague, Czech Republic, E-
mail rohn@uivt.cas.cz.

