
ENCLOSING SOLUTIONS OF LINEAR EQUATIONS

JIRI ROHN∗ AND GEORG REX†

Abstract. It is shown that Rump’s method for enclosing solutions of linear equations can be
reformulated in an interval–free form and that the underlying inclusion result can be proved by
elementary means without using Brouwer’s fixed–point theorem. A sufficient condition on Rump’s
“inflation parameter” ε is given under which finite termination occurs. Also, a more general modified
algorithm is studied for which the number of iterations can be expressed by an explicit formula.

Key words. Linear equations, enclosure, interval–free, finite termination

AMS subject classifications. 15A06, 65G10

1. Introduction. S. M. Rump in his basic paper [11] and in a series of subse-
quent papers [12], [13], [14], [15] developed a method for enclosing solutions of systems
of linear equations. The most attractive feature of the method consists in the fact
that it yields a validated enclosure (i.e., a narrow hyperrectangle containing the solu-
tion) computed by a finite precision arithmetic; hence, the effect of rounding errors
arising in finite precision computations is controlled by means of finite precision com-
putations. The method is described in sufficient detail in section 3 below. For the
purposes of the Introduction, we shall give only a brief sketch of it here.

In order to solve a system of linear equations

Ax̂ = b(1.1)

with A ∈ IRn×n and b ∈ IRn, after computing an approximate solution x0 of (1.1) and
an approximate inverse of A, the equation (1.1) is transformed into a residual form

x∗ = Gx∗ + g,(1.2)

where x∗ = x̂− x0 is the difference between the exact and the approximate solution.
The basic idea of the enclosure method consists in applying the Brouwer’s fixed–point
theorem to (1.2) to guarantee existence of the solution x∗ of (1.2) in a given interval
vector (hyperrectangle) X. The respective inclusion is theoretically formulated in
power set operations, but in practical computations interval arithmetic operations
must be used; then the inclusion takes on the form

G¯X ⊕ g ⊂ Int(X)(1.3)

(Rump’s Theorem 3.1 below), where ¯, ⊕ denote the interval arithmetic multipli-
cation and addition (defined in section 2) and Int(X) is the interior of X. Rump
proposed in [11] an algorithm for finding an interval vector X satisfying (1.3). The
algorithm is formulated in terms of interval arithmetic operations and contains a pa-
rameter ε ∈ (0, 1) (called the “inflation parameter” by Rump) as a tool for enforcing
finite termination of the algorithm. Even so, finite termination is guaranteed only

∗ Faculty of Mathematics and Physics, Charles University, Prague (rohn@ms.mff.cuni.cz) and
Institute of Computer Science, Academy of Sciences, Prague, Czech Republic (rohn@uivt.cas.cz).
This author’s work was supported by the Czech Republic Grant Agency under grant GAČR
201/95/1484.

† Institute of Mathematics, University of Leipzig, Augustusplatz 10-11, D-04109 Leipzig, Germany
(rex@mathematik.uni-leipzig.d400.de).

1

2 J. ROHN AND G. REX

under some conditions [11], [13], but in general the algorithm proved to perform very
well: in most practical cases it terminates in a few iterations [2] and the computed
enclosure often exhibits a least significant bit accuracy [11].

The present work was motivated by an attempt to understand what is going
on behind Rump’s method in terms of classical numerical analysis. This has led to
formulation of three questions. First, can the basic inclusion (1.3) be formulated in a
more usual way without using interval arithmetic operations? And, as a related issue,
is Brouwer’s fixed–point theorem really needed in considerations concerning a simple
linear problem (1.2)? Second, can Rump’s algorithm be formulated in an interval–
free form? And third, what is the role of the “inflation parameter” ε and under what
conditions on it can finite termination of the algorithm be guaranteed?

After a brief introduction of interval arithmetic in section 2 and a more detailed
description of Rump’s method in section 3, we address the above three questions in
sections 4 to 6. In Theorem 4.1 we show that the inclusion (1.3) can be equivalently
written in the form of a simple inequality

|(I −G)x− g| < (I − |G|)d(1.4)

involving only the usual real arithmetic operations, where x is the center and d is
the radius of the interval vector X. Next we prove by elementary means that if (1.4)
holds, then the solution x∗ of (1.2) satisfies x − d < x∗ < x + d (Theorem 4.2); this,
in view of Theorem 4.1, gives an elementary proof of Rump’s Theorem 3.1, avoiding
an explicit use of Brouwer’s fixed–point theorem. Based on some simple properties
of interval arithmetic operations given in Lemma 2.1 and Lemma 2.2 of section 2, we
then give in section 5 an interval–free description of Rump’s algorithm, using only
the usual real arithmetic operations and absolute values. This interval–free version of
the algorithm generates the same sequence of interval vectors as the original Rump’s
algorithm, hence it can be used alternatively. These results yield answers to the first
two questions. Next, in Theorem 6.3 of section 6 we give a sufficient condition

(1 + 4ε)|G| · |x∗| < |x∗|(1.5)

for a finite termination of Rump’s algorithm (both in the original or in the interval–free
version) using an inflation parameter ε. The proof of this result is rather complicated
and for clarity it is preceded by two auxiliary lemmas. Finally, in section 7 we in-
vestigate a modification of the original algorithm (also proposed by Rump [13]) in
which an additive constant is employed instead of the multiplicative parameter ε. In
Theorem 7.1 we show that this modified algorithm has a finite termination property
if and only if

%(|G|) < 1

holds (independently of the choice of the additive constant), which, compared with
the sufficient condition (1.5) for the original algorithm, is a much better result. Also,
the number of iterations taken by the modified algorithm can be expressed by an
explicit formula (Theorem 7.2).

The proofs of all these results are carried out by linear algebraic means. Our
basic tool, frequently employed throughout, is the equivalence of the four assertions

(i) %(|G|) < 1,
(ii) |G|x < x for some x > 0,

(iii) (I − |G|)−1 ≥ 0,

ENCLOSING SOLUTIONS OF LINEAR EQUATIONS 3

(iv) |G|j → 0
for a square matrix G (since |G| is nonnegative), which can be found e.g. in Varga
[16] or Neumaier [6].

We hope that these results may contribute to better understanding of the princi-
ples of validated computations from a classical (noninterval) point of view. Also, the
noninterval inequality (1.4) of Theorem 4.1 may serve as a theoretical basis for deriv-
ing other alternative methods for computing validated solutions of linear equations.

2. Interval arithmetic. In this section we briefly survey the basic rules of in-
terval arithmetic (described in detail in Alefeld and Herzberger [1] or Neumaier [6])
and we prove some simple properties to be used later. By an interval we always un-
derstand a nonempty compact real interval [a, a] = {a; a ≤ a ≤ a}. Operations over
intervals are defined by the general rule

[a, a] ◦ [b, b] = {α ◦ β; α ∈ [a, a], β ∈ [b, b]},(2.1)

where ◦ denotes any of the four arithmetic operations. To make a clear distinction
from the usual real arithmetic operations, we denote the interval arithmetic operations
by ⊕, ª, ¯ and ®. It is easy to show ([1], [6]) that the general definition (2.1) yields
the following explicit formulae:

[a, a]⊕ [b, b] = [a + b, a + b],

[a, a]ª [b, b] = [a− b, a− b],

[a, a]¯ [b, b] = [min M, max M],

where

M = {ab, ab, ab, ab},

and

[a, a]® [b, b] = [a, a]¯
[

1

b
,

1
b

]

provided 0 /∈ [b, b]. In particular, interval arithmetic operations also apply to real
numbers if we identify a real number a with the interval [a, a]; in this sense interval
arithmetic is an extension of real arithmetic.

We shall prove here two very specific properties of interval arithmetic multiplica-
tion that will be used later. Let us recall that when speaking of an interval [a, a], we
always understand implicitly that it is nonempty, i.e., a ≤ a.

Lemma 2.1. Let α, β and δ ≥ 0, ε ∈ [0, 1] be real numbers. Then we have

α¯ [β − δ, β + δ] = [αβ − |α|δ, αβ + |α|δ](2.2)

and

[1− ε, 1 + ε]¯ [α, β] = [α− ε|α|, β + ε|β|].(2.3)

4 J. ROHN AND G. REX

Proof. 1) According to the above explicit rules, the lower bound of α¯[β−δ, β+δ]
is equal to min{αβ − αδ, αβ + αδ} = αβ − |αδ| = αβ − |α|δ, and the upper bound is
max{αβ − αδ, αβ + αδ} = αβ + |αδ| = αβ + |α|δ.

2) In view of ε ∈ [0, 1], the lower bound of [1 − ε, 1 + ε] ¯ [α, β] is equal to
min{(1−ε)α, (1−ε)β, (1+ε)α, (1+ε)β} = min{(1−ε)α, (1+ε)α} = α−|εα| = α−ε|α|;
the proof for the upper bound is analogous.

An n-dimensional interval vector is a set of the form

[x, x] = {x; x ≤ x ≤ x}(2.4)

(componentwise inequalities), where x, x ∈ IRn, x ≤ x. For the purposes of applicabil-
ity of interval operations, an interval vector (2.4) is identified with an n-dimensional
vector with interval components [xi, xi] (i = 1, . . . , n), i.e. we adopt the convention
that

([x, x])i = [xi, xi]

for each i. This enables us to define a matrix–vector interval multiplication and
addition

G¯ [x, x]⊕ [g, g],(2.5)

where G = (gij) is a real n× n matrix, as an interval vector with the components

(G¯ [x, x]⊕ [g, g])i = gi1 ¯ [x1, x1]⊕ . . .⊕ gin ¯ [xn, xn]⊕ [g
i
, gi](2.6)

(i = 1, . . . , n); we can see that (2.6) is a usual matrix multiplication and addition
where the real operations are replaced by the interval ones. The following lemma
(which turns out to be the basic tool for an interval–free reformulation of Rump’s
algorithm) shows that the expression (2.5) can be evaluated without using interval
arithmetic operations. To this end, the interval vector [x, x] must be written in the
form [x−d, x+d] (hence, x = 1

2 (x+x) and d = 1
2 (x−x)), and we employ the absolute

value of G defined by |G| = (|gij |); notice that only real operations appear on the
right–hand side:

Lemma 2.2. We have

G¯ [x− d, x + d]⊕ [g, g] = [Gx− |G|d + g,Gx + |G|d + g].(2.7)

Proof. From (2.6), using (2.2) we have

(G¯ [x− d, x + d]⊕ [g, g])i

= gi1 ¯ [x1 − d1, x1 + d1]⊕ . . .⊕ gin ¯ [xn − dn, xn + dn]⊕ [g
i
, gi]

= [gi1x1 − |gi1|d1, gi1x1 + |gi1|d1]⊕ . . .⊕ [ginxn − |gin|dn, ginxn + |gin|dn]⊕ [g
i
, gi]

= [
∑

j

gijxj −
∑

j

|gij |dj + g
i
,
∑

j

gijxj +
∑

j

|gij |dj + gi]

= [(Gx− |G|d + g)i, (Gx + |G|d + g)i]

= [Gx− |G|d + g,Gx + |G|d + g]i,

which is (2.7).

ENCLOSING SOLUTIONS OF LINEAR EQUATIONS 5

3. Rump’s method. Consider a system of linear equations

Ax̂ = b(3.1)

with an n× n matrix A. For an arbitrary nonsingular n× n matrix R and arbitrary
x0 ∈ IRn, (3.1) is equivalent to

x̂− x0 = (I −RA)(x̂− x0) + R(b−Ax0).

Hence if we put

G = I −RA,(3.2)

g = R(b−Ax0),(3.3)

then we have

x̂ = x0 + x∗,(3.4)

where x∗ solves

x∗ = Gx∗ + g.(3.5)

In practice it is recommended to choose R ≈ A−1 and x0 ≈ x̂, so that G and g are of
small norm and x∗ is close to 0.

Rump’s basic idea on enclosing the solution of (3.5), which goes back to Krawczyk
[3], [4] and Moore [5], is contained in the following theorem, where Int(X) denotes
the interior of X (i.e., Int(X) = {x; x < x < x} for X = [x, x]) and g is identified
with [g, g]:

Theorem 3.1. (Rump [11]) Let an interval vector X satisfy

G¯X ⊕ g ⊂ Int(X).(3.6)

Then the equation (3.5) has a unique solution x∗ ∈ Int(X).
In fact, in view of the basic property (2.1) of interval arithmetic operations, from

(3.6) follows

G ·X + g := {Gx + g; x ∈ X} ⊆ G¯X ⊕ g ⊂ Int(X) ⊂ X,

hence, due to the Brouwer fixed–point theorem, the mapping x 7→ Gx + g has a fixed
point x∗ in X. Therefore (3.5) holds, which implies that x∗ = Gx∗ + g ∈ Int(X).
As explained in [11], the use of Int(X) instead of X on the right–hand side of (3.6)
(which is not necessary for application of Brouwer’s theorem) implies nonsingularity
of I −G and consequently the uniqueness of the solution of (3.5). The relationship of
this result to the original problem of solving (3.1) is provided by the following theorem
based on (3.4):

Theorem 3.2. (Rump [11]) Let G and g be given by (3.2) and (3.3) and let (3.6)
hold for some interval vector X. Then A is nonsingular and the solution x̂ of (3.1)
satisfies

x̂ ∈ x0 ⊕ Int(X).

In view of this result, we may restrict our attention to enclosing the solution of
the “residual equation” (3.5) in the sequel.

6 J. ROHN AND G. REX

In his paper [11, p. 62], Rump proposed the following algorithm for finding an
interval vector containing the solution x∗ of (3.5):

select ε ∈ (0, 1);
Y := [g, g];
repeat

X := [1− ε, 1 + ε]¯ Y ;
Y := G¯X ⊕ g

until Y ⊂ Int(X);
{then x∗ ∈ Y }.

If the stopping rule Y ⊂ Int(X) is satisfied, then (3.6) holds, hence by Theorem 3.1,
x∗ = Gx∗ + g ∈ G ¯ X ⊕ g = Y . When using the interval arithmetic operations,
downwardly and upwardly oriented rounding must be used to guarantee that Y ⊂
Int(X) holds; then Y is a verified enclosure of the solution x∗.

The algorithm proved to perform very well. Practical experience shows that if it
terminates in a finite number of steps, then the number of loops is relatively small (“it
is an empirical fact that the inner inclusion is satisfied nearly always after a few steps
or never” [2, p. 180]) and the solution is often computed with least significant bit
accuracy [11]. However, finite termination is not guaranteed: if %(|G|) ≥ 1, then the
stopping rule is never satisfied (Theorem 4.3 below) and the algorithm constructs an
infinite sequence of interval vectors. Although it has been reported that the number
of loops is approximately independent of the choice of the “inflation parameter” ε
even for values far exceeding the prescribed range (0, 1) (see [2]), it seems that the
problem of choosing an appropriate value of ε that would guarantee finite termination
of the algorithm still remains open.

Summing up, there are three basic questions concerning Rump’s method: first,
whether Rump’s condition (3.6) can be given a more transparent form; second,
whether the algorithm can be formulated without using interval arithmetic; and third,
what values of the inflation parameter ε (if they exist at all) guarantee finite termi-
nation of the algorithm. We shall address these questions in the next three sections.

4. Reformulation of Rump’s condition. We start with an equivalent refor-
mulation of the condition (3.6) of Theorem 3.1 in the form of a simple inequality (cf.
[7], [10]). Notation: I is the unit matrix, the absolute value of x = (xi) is given by
|x| = (|xi|), and vector inequality x < y is understood componentwise.

Theorem 4.1. Let X = [x− d, x + d]. Then Rump’s condition

G¯X ⊕ g ⊂ Int(X)

is equivalent to

|(I −G)x− g| < (I − |G|)d.(4.1)

Proof. Since G¯X ⊕ g = [Gx− |G|d + g, Gx + |G|d + g] by Lemma 2.2, (3.6) is
equivalent to

x− d < Gx− |G|d + g,

Gx + |G|d + g < x + d,

ENCLOSING SOLUTIONS OF LINEAR EQUATIONS 7

which in turn is equivalent to

−(I − |G|)d < (I −G)x− g < (I − |G|)d
and thus also to (4.1).

In this way, we have avoided the use of interval arithmetic in the formulation
of Rump’s condition. Let us note that in terms of the original problem (3.1) the
condition (4.1) reads

|R(A(x + x0)− b)| < (I − |I −RA|)d.

We shall now prove by elementary means that (4.1) implies x∗ ∈ Int(X). This, in the
light of Theorem 4.1, gives an elementary proof of Rump’s Theorem 3.1, avoiding an
explicit use of Brouwer’s fixed–point theorem (cf. [13, Lemma 10]).

Theorem 4.2. If x and d > 0 satisfy (4.1), then the equation (3.5) has a unique
solution x∗ and

x− d < x∗ < x + d(4.2)

holds.
Proof. From (4.1) we have 0 ≤ |G|d < d, hence d > 0, so that the inequality

|G|d < d implies %(G) ≤ %(|G|) < 1 (see [16]), hence I − G is nonsingular and (3.5)
has a unique solution x∗. Next, from

x∗ = Gx∗ + g

we have

x∗ − x = G(x∗ − x) + g − (I −G)x

and taking absolute values we obtain

|x∗ − x| ≤ |G| · |x∗ − x|+ |(I −G)x− g|,
hence in view of (4.1),

(I − |G|)|x∗ − x| ≤ |(I −G)x− g| < (I − |G|)d.(4.3)

Since %(|G|) < 1 implies (I − |G|)−1 ≥ 0, premultiplying (4.3) by this nonnegative
matrix yields

|x∗ − x| < d,

which is (4.2).
Next we prove a necessary and sufficient condition for solvability of (4.1). A

similar result for (3.6) was proved by Rump in [13].
Theorem 4.3. The inequality (4.1) has a solution x and d ≥ 0 if and only if

%(|G|) < 1(4.4)

holds.
Proof. The “only if” part was proved in the proof of Theorem 4.2. If (4.4) holds,

then I − G is nonsingular, hence (3.5) has a solution x∗, and there exists a d > 0
satisfying |G|d < d [16]. Then (4.1) is satisfied by x∗ and d.

8 J. ROHN AND G. REX

Hence, no interval vector X satisfies the inclusion (3.6) if %(|G|) ≥ 1; this means
that Rump’s algorithm will never terminate in this case.

Next we give a description of all solutions of (4.1) which employs a positive
parameter vector δ. This result is a generalization of Theorem 2 in [8].

Theorem 4.4. Let (4.4) hold. Then X = [x − d, x + d] satisfies (4.1) (or,
equivalently, (3.6)) if and only if d is of the form

d = (I − |G|)−1(|(I −G)x− g|+ δ)(4.5)

for some δ > 0.
Proof. If x and d satisfy (4.1), then for

δ := (I − |G|)d− |(I −G)x− g|

we have δ > 0 and (4.5). Conversely, if (4.5) holds for some δ > 0, then

(I − |G|)d = |(I −G)x− g|+ δ > |(I −G)x− g|,

so that x and d satisfy (4.1).
Hence, if (4.4) holds, then for any x ∈ IRn we can construct an interval vector

X = [x− d, x + d] satisfying Rump’s condition when computing d from (4.5) for some
(but arbitrary) δ > 0. In view of nonnegativity of (I − |G|)−1, (4.5) gives the lower
bound

d > (I − |G|)−1|(I −G)x− g|

which is independent of the choice of δ.

5. Interval–free version of the algorithm. The results of Lemma 2.1 and
Lemma 2.2 enable us to formulate an interval–free version of Rump’s algorithm. Let
us denote the interval vectors X and Y appearing in the algorithm (section 3) by
X = [x− d, x + d] and Y = [y − h, y + h]. Since from the updating formulae

X := [1− ε, 1 + ε]¯ Y,

Y := G¯X ⊕ g

we have

[x− d, x + d] := [1− ε, 1 + ε]¯ [y − h, y + h] = [y − h− ε|y − h|, y + h + ε|y + h|]

(Lemma 2.1, (2.3)) and

[y − h, y + h] := G¯ [x− d, x + d]⊕ g = [Gx− |G|d + g,Gx + |G|d + g],

(Lemma 2.2), which gives

x := y +
ε

2
(|y + h| − |y − h|),

d := h +
ε

2
(|y + h|+ |y − h|),

y := Gx + g,

h := |G|d,

ENCLOSING SOLUTIONS OF LINEAR EQUATIONS 9

and since Y ⊂ Int(X) is equivalent to

x− d < y − h,

y + h < x + d,

and thereby also to

|x− y| < d− h,

the Rump’s original algorithm can be equivalently rewritten in the following interval–
free form:

select ε ∈ (0, 1);
y := g; h := 0;
repeat

x := y + ε
2 (|y + h| − |y − h|);

d := h + ε
2 (|y + h|+ |y − h|);

y := Gx + g;
h := |G|d

until |x− y| < d− h;
{then y − h ≤ x∗ ≤ y + h}.

It is worth emphasizing that this algorithm generates the same sequence of interval
vectors X = [x − d, x + d], Y = [y − h, y + h] as the Rump’s original algorithm, but
interval arithmetic is not used here. As before, downwardly and upwardly oriented
rounding must be used to guarantee that the stopping rule holds; then we have a
verified enclosure y − h ≤ x∗ ≤ y + h.

Consider any system

x∗ = Gx∗ + g

with an n× n matrix G for which Rump’s algorithm terminates in a finite number of
steps. Let us construct an (n + 1) × (n + 1) matrix G′ and an (n + 1)-dimensional
vector g′ by

G′ =

(
G 0
0T 0

)
,

g′ =

(
g
0

)
.

Then a simple computation shows that

%(|G′|) = %(|G|) < 1(5.1)

(due to Theorem 4.3), hence the equation

x′ = G′x′ + g′(5.2)

has a unique solution

x′ =

(
x∗

0

)
.

10 J. ROHN AND G. REX

However, due to the special structure of G and g, Rump’s algorithm when applied to
(5.2) generates for each ε > 0 a sequence of interval vectors X = [x − d, x + d], Y =
[y − h, y + h] satisfying

xn+1 = dn+1 = yn+1 = hn+1 = 0(5.3)

at each iteration, as it can be easily seen from the above interval–free description.
Hence, the stopping rule |x − y| < d − h is never satisfied for any ε > 0 and finite
termination is lost.

Rump formulated in [13, Lemma 21] a very general “inflation” condition under
which the algorithm is finite. In our case the condition requires an existence of a
vector s > 0 such that ε|y − h| ≥ s, ε|y + h| ≥ s hold at each iteration. The equation
(5.3) shows that in our example the condition is violated, hence Rump’s result does
not apply. In section 7 we shall describe a modification of Rump’s algorithm that will
be able to handle even this heavily degenerated example.

6. Finite termination conditions. The explicit form of iterations given in sec-
tion 5 makes it possible to formulate another sufficient condition for finite termination
of the algorithm. In order to make the proof of the main result more clear, we shall
precede it by two auxiliary lemmas. The first lemma gives a sufficient condition for
the four sequences

xj+1 = yj +
ε

2
(|yj + hj | − |yj − hj |),(6.1)

dj+1 = hj +
ε

2
(|yj + hj |+ |yj − hj |),(6.2)

yj+1 = Gxj+1 + g,(6.3)

hj+1 = |G|dj+1(6.4)

with y0 = g, h0 = 0 (see the description of the algorithm, section 5) to converge.
Lemma 6.1. Let ε ∈ (0, 1) satisfy

(1 + 2ε)%(|G|) < 1.(6.5)

Then the sequences {xj}, {dj}, {yj}, {hj} given by (6.1)–(6.4) are convergent.
Proof. From (6.1)–(6.4) we obtain

|xj+1 − xj | ≤ |yj − yj−1|+ ε

2
||yj + hj | − |yj−1 + hj−1||+ ε

2
||yj − hj | − |yj−1 − hj−1||

≤ (1 + ε)|yj − yj−1|+ ε|hj − hj−1|
≤ (1 + ε)|G| · |xj − xj−1|+ ε|G| · |dj − dj−1|,

and in a similar way we get

|dj+1 − dj | ≤ ε|G| · |xj − xj−1|+ (1 + ε)|G| · |dj − dj−1|,
which together gives

(|xj+1 − xj |
|dj+1 − dj |

)
≤

(
(1 + ε)|G| ε|G|

ε|G| (1 + ε)|G|
)(|xj − xj−1|

|dj − dj−1|
)

.(6.6)

Now, the condition (6.5) implies existence of a vector x > 0 satisfying

(1 + 2ε)|G|x < x

ENCLOSING SOLUTIONS OF LINEAR EQUATIONS 11

(see [16]). Then we have
(

(1 + ε)|G| ε|G|
ε|G| (1 + ε)|G|

)(
x
x

)
=

(
(1 + 2ε)|G|x
(1 + 2ε)|G|x

)
<

(
x
x

)
,

hence the spectral radius of the matrix
(

(1 + ε)|G| ε|G|
ε|G| (1 + ε)|G|

)

is less than one, and the inequality (6.6) implies that the sequence
{(

xj

dj

)}

is a Cauchy sequence, hence it is convergent. This proves that {xj} and {dj} converge;
convergence of {yj}, {hj} then follows immediately from (6.3), (6.4).

The second lemma gives a sufficient condition for a special nonlinear equation to
have a solution whose all entries are nonzero:

Lemma 6.2. Let Q ∈ IRm×m, q ∈ IRm and let

2|Q| · |q| < |q|(6.7)

hold. Then the equation

y = Q|y|+ q(6.8)

has a unique solution ŷ and all entries of ŷ are nonzero and are of the same signs as
the respective entries of q.

Proof. As before, from (6.7) we deduce that %(|Q|) < 1
2 , hence |Q|j → 0 and

(I − |Q|)−1 ≥ 0. If we construct the iteration

yk+1 = Q|yk|+ q(6.9)

(k = 0, 1, . . .), y0 = q, then we have

|yk+1 − yk| ≤ |Q| · |yk − yk−1|,
which in view of |Q|j → 0 implies that {yk} is a Cauchy sequence, hence yk → ŷ, so
that (6.9) gives

ŷ = Q|ŷ|+ q,(6.10)

and the solution is unique since from y = Q|y| + q we obtain |ŷ − y| ≤ |Q| · |ŷ − y|,
hence (I − |Q|)|ŷ − y| ≤ 0 and premultiplying by (I − |Q|)−1 ≥ 0 gives |ŷ − y| ≤ 0,
hence ŷ = y. Now, from (6.10) we obtain

|ŷ| ≤ |Q| · |ŷ|+ |q|,
hence

|ŷ| ≤ (I − |Q|)−1|q|,
and again from (6.10),

|ŷ − q| ≤ |Q| · |ŷ| ≤ |Q|(I − |Q|)−1|q| = (I − |Q|)−1|Q| · |q|.(6.11)

12 J. ROHN AND G. REX

But (6.7) implies |Q| · |q| < (I − |Q|)|q|, hence

(I − |Q|)−1|Q| · |q| < |q|,
which combined with (6.11) gives

|ŷ − q| < |q|.
This means that each ŷi is nonzero and is of the same sign as qi.

Now we give a finite termination condition for Rump’s algorithm (both in the
original version of section 3 or in the interval–free version of section 5). Unfortunately,
the condition involves the solution x∗ and cannot be a priori verified.

Theorem 6.3. Rump’s algorithm is finite for each inflation parameter ε ∈ (0, 1)
satisfying

(1 + 4ε)|G| · |x∗| < |x∗|.(6.12)

Proof. First, the inequality (6.12) implies

(1 + 2ε)%(|G|) ≤ (1 + 4ε)%(|G|) < 1,(6.13)

hence xj → x, dj → d, yj → y, hj → h by Lemma 6.1. Taking the limits in (6.1)–
(6.4), we obtain

x = y +
ε

2
(|y + h| − |y − h|),(6.14)

d = h +
ε

2
(|y + h|+ |y − h|),(6.15)

y = Gx + g,(6.16)

h = |G|d.(6.17)

This implies

y = Gy +
ε

2
G(|y + h| − |y − h|) + g

and

h = |G|h +
ε

2
|G|(|y + h|+ |y − h|),

hence

y =
ε

2
(I −G)−1G(|y + h| − |y − h|) + x∗(6.18)

and

h =
ε

2
(I − |G|)−1|G|(|y + h|+ |y − h|).(6.19)

Then by subtracting and adding (6.18) and (6.19) we get

ŷ = Q|ŷ|+ q,

where

ŷ =

(
y − h
y + h

)
,

q =

(
x∗

x∗

)

ENCLOSING SOLUTIONS OF LINEAR EQUATIONS 13

and

Q =
ε

2

(−(I −G)−1G− (I − |G|)−1|G|, (I −G)−1G− (I − |G|)−1|G|
−(I −G)−1G + (I − |G|)−1|G|, (I −G)−1G + (I − |G|)−1|G|

)
.

Since (6.12) implies in the usual way that

4ε(I − |G|)−1|G| · |x∗| < |x∗|
holds, we have

2|Q| · |q| ≤
(

4ε(I − |G|)−1|G| · |x∗|
4ε(I − |G|)−1|G| · |x∗|

)
< |q|,

and Lemma 6.2 implies that |ŷ| > 0, hence |y − h| > 0 and |y + h| > 0. Then from
(6.14) and (6.15) we have

|x− y| =
ε

2
(|y + h| − |y − h|) <

ε

2
(|y + h|+ |y − h|) = d− h,

which means that

|xj − yj | < dj − hj

holds from some j on, hence the stopping rule is satisfied at some iteration and the
algorithm is finite.

Corollary 6.4. Let

|G| · |x∗| < |x∗|(6.20)

hold. Then there exists an ε0 > 0 such that Rump’s algorithm is finite for each
ε ∈ (0, ε0).

Proof. In fact, according to Theorem 6.3 it is sufficient to take ε0 as the supremum
of all ε’s satisfying (6.12). This ε0 is positive due to (6.20).

Notice that (6.20) implies %(|G|) < 1, which is (4.4). The condition (6.20) is not
as restrictive as it may seem since in practice the matrix G, computed by G = I−RA,
where R is an approximation of A−1 (section 3), is close to 0.

7. Modified Rump’s algorithm. Rump proposed in [13] also another algo-
rithm scheme which employs an additive constant instead of a multiplicative one.
This is done by replacing the statement

X := [1− ε, 1 + ε]¯ Y

in the original algorithm (section 3) by

X := Y ⊕ [−f, f],

where f is some (sufficiently small) prescribed positive vector. We shall call the
resulting algorithm a modified Rump algorithm. In this section we show that this
algorithm is much easier to analyze and that the number of steps can be given by an
explicit formula.

Let us denote the interval vectors appearing in the modified algorithm by X =
[x− d, x + d], Y = [y − h, y + h]. Then from the updating formulae

X := Y ⊕ [−f, f],

Y := G¯X ⊕ g

14 J. ROHN AND G. REX

we have

[x− d, x + d] := [y − h− f, y + h + f],

[y − h, y + h] := [Gx− |G|d + g,Gx + |G|d + g],

(Lemma 2.2), which amounts to

x := y,

d := h + f,

y := Gx + g,

h := |G|d,

and Y ⊂ Int(X) is equivalent to |x− y| < d−h. Hence the modified Rump algorithm
can be written in the following interval–free form:

select f > 0;
y := g; h := 0;
repeat

x := y;
d := h + f ;
y := Gx + g;
h := |G|d

until |x− y| < d− h;
{then y − h ≤ x∗ ≤ y + h}.

It turns out that, in contrast to the original algorithm, finite termination of the
modified algorithm can be characterized easily:

Theorem 7.1. The modified Rump algorithm terminates in a finite number of
steps for each f > 0 if and only if

%(|G|) < 1(7.1)

holds.
Proof. Let {xj}, {dj}, {yj} and {hj} be the sequences generated by the modified

algorithm, with y0 = g, h0 = 0. Then from the recurrences

xj+1 = yj ,

dj+1 = hj + f,

yj+1 = Gxj+1 + g,

hj+1 = |G|dj+1

it follows easily by induction that

xj =
j−1∑

`=0

G`g,

dj =
j−1∑

`=0

|G|`f,

yj =
j∑

`=0

G`g,

ENCLOSING SOLUTIONS OF LINEAR EQUATIONS 15

hj =
j∑

`=1

|G|`f

(j = 1, 2, . . .). Hence, the stopping rule

|xk − yk| < dk − hk

is satisfied for some k if and only if

|Gkg|+ |G|kf < f(7.2)

holds. Now, if the algorithm terminates in a finite number of steps for some f > 0,
then (7.2) holds, hence |G|kf < f , implying %(|G|k) < 1 and

(%(|G|))k ≤ %(|G|k) < 1,

which gives (7.1). Conversely, if (7.1) holds, then Gj → 0 and |G|j → 0, hence for each
f > 0 there exists a k such that (7.2) is satisfied, which means that |xk−yk| < dk−hk,
and the modified algorithm terminates.

Since the condition (7.1) is identical with (4.4), this result shows a remarkable
property: if Rump’s inclusion (3.6) (equivalently, (4.1)) has a solution, then a solution
to it can be found by the modified algorithm. Hence, it is more general than the
original algorithm of section 3 for which the finite termination condition of Theorem
6.3 is more restrictive. In particular, the example given in section 5 on which Rump’s
algorithm fails can be solved by the modified algorithm since %(|G′|) < 1 (eq. (5.1)).

Theorem 7.2. If (7.1) holds, then the modified Rump algorithm terminates at
the k-th iteration, where

k = min{j; |Gjg|+ |G|jf < f}.(7.3)

Proof. Obviously, k is the minimum value of j for which |xj−yj | < dj−hj holds;
this, according to the first part of the previous proof, is equivalent to |Gjg|+|G|jf < f .
Hence (7.3) follows.

As explained in section 3, in practice G := I − RA is small, hence Gj , |G|j will
converge rapidly to 0 and the stopping rule (7.2) can be expected to be satisfied after
a few steps. In particular, if |Gg|+ |G|f < f , then k = 1. Let us note that Theorems
7.1 and 7.2 improve the result of Lemma 2.4 in [11].

8. Final remarks. The interval-free versions of Rump’s algorithms described in
sections 5 and 7 are not only easier to understand, but also advantageous in practice
since they require fewer switchings of the rounding mode (which is as costly as mul-
tiplication or addition). In Theorem 4.2 we showed that if x and d > 0 satisfy (4.1),
then x − d < x∗ < x + d. Hence, other alternative methods for computing validated
solutions of linear equations, based on solving directly the inequality (4.1), may be
designed. Such methods were proposed by Rex [9] and Rohn [10].

Acknowledgments. A part of this work was done during the first author’s stay
at the Center of Theoretical Sciences of the University of Leipzig. The authors wish to
thank Prof. S. M. Rump and Prof. G. Heindl for valuable discussions on the subject
of this paper.

REFERENCES

16 J. ROHN AND G. REX

[1] G. Alefeld and J. Herzberger, Introduction to Interval Computations, Academic Press,
New York, 1983.

[2] R. Hammer, M. Hocks, U. Kulisch and D. Ratz, Numerical Toolbox for Verified Com-
puting I, Springer–Verlag, Berlin, 1993.

[3] R. Krawczyk, Newton–Algorithmen zur Bestimmung von Nullstellen mit Fehlerschranken,
Computing, 4 (1969), pp. 187–201.

[4] , Intervalliterationsverfahren, Bericht 186, Mathematisch–Statistische Sektion im
Forschungszentrum Graz, Graz, 1982.

[5] R. E. Moore, A test for existence of solutions to nonlinear systems, SIAM Journal on Nu-
merical Analysis, 14 (1977), pp. 611–615.

[6] A. Neumaier, Interval Methods for Systems of Equations, Cambridge University Press, Cam-
bridge, 1990.

[7] H.-G. Rex, Zur Lösungseinschließung linearer Gleichungssysteme, Wissenschaftliche
Zeitschrift, Technische Hochschule Leipzig, 15 (1991), pp. 441–447.

[8] G. Rex, Zu a posteriori Fehlerabschätzungen bei linearen Gleichungssystemen, Zeitschrift für
Angewandte Mathematik und Mechanik, 72 (1992), pp. T640–T643.

[9] , Parameterabhängige Lösungseinschließungen linearer Gleichungssysteme, Zeitschrift
für Angewandte Mathematik und Mechanik, 74 (1994), pp. T683–T685.

[10] J. Rohn, Validated solutions of linear equations, Technical Report 620, Institute of Computer
Science, Academy of Sciences of the Czech Republic, Prague, January 1995.

[11] S. M. Rump, Solving algebraic problems with high accuracy, in A New Approach to Scientific
Computation, U. Kulisch and W. Miranker, ed., New York, 1983, Academic Press, pp. 51–
120.

[12] , Solution of linear and nonlinear algebraic problems with sharp, guaranteed bounds,
Computing Supplementum, 5 (1984), pp. 147–168.

[13] , New results on verified inclusions, in Accurate Scientific Computations, W. L. Miranker
and R. A. Toupin, ed., Lecture Notes in Computer Science 235, Berlin, 1986, Springer–
Verlag, pp. 31–69.

[14] , On the solution of interval linear systems, Computing, 47 (1992), pp. 337–353.
[15] , Verification methods for dense and sparse systems of equations, in Topics in Validated

Computations, J. Herzberger, ed., Amsterdam, 1994, North–Holland, pp. 63–135.
[16] R. Varga, Matrix Iterative Analysis, Prentice–Hall, Englewood Cliffs, 1962.

