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Abstract

It is proved that a classical bound on solutions of perturbed systems of linear
equations may yield arbitrarily large polynomial overestimations for arbitrarily
narrow perturbations provided the conjecture “P#£NP” is true.
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1 Introduction

For a system of linear equations

Az =b (1)
with an n X n nonsingular matrix A, consider a family of perturbed systems
Ax =1 (2)
with data satisfying
A=Al <A (3)
and
b =0 <6, (4)

where A > 0 and 6 > 0 are an n X n perturbation matrix and a perturbation n-
vector, respectively, and the inequalities are understood componentwise. The classical
numerical argument using Neumann series shows that if the spectral condition

o(|A7HA) <1 (5)
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holds, then each A’ satisfying (3) is nonsingular and the solution of each system (2)
with data (3), (4) satisfies
2" — x| < d, (6)

where

d=(I—[ATA) AT (2] +9) (7)

and [ is the unit matrix (see Skeel [8] or Rump [6]). To keep the paper self-contained,
we give here another simple proof of this result: for the solutions z, 2’ of (1), (2) under
(3), (4) we have

AT A — )| < JATH (A= A) (@' —2) + (A= Az + V' — b
< |AT(Af — 2| + Alz] +9),

2" — 2|

hence
(I —]A7HA) 2" -z < [ATY(Alz| +6)

and premultiplying this inequality by (I — |A™!|A)~!, which is nonnegative in view of
(5), we obtain (6), where d is given by (7).

The quality of the estimation (6) has been paid little attention in the literature.
Obviously, the bound d is exact if A = 0. In fact, in this case, for each i € {1,...,n},
if we take b = b; + 0; if (A™");; > 0 and b} = b; — d; otherwise, then V' satisfies (4)
and for the solution x’ of Az’ =¥ we have

|2} — 2| = Z [(A™1)510; = ds,
J

hence the bound is achieved. However, this argument fails in the case A # 0. In
this paper we show that the famous conjecture “P#NP” (see Garey and Johnson [1]
for details) shreds a surprising light on this problem: in the main result to follow
we show that if the conjecture is true, then the formula (6) may yield an arbitrarily
large polynomial overestimation for arbitrarily narrow perturbations A, . Hence, the
conjecture penetrates the area of numerical linear algebra as well.

2 Main result
We shall use the subordinate matrix norm
[A|lm = max |A]

and the vector norm
18] = ma |3

Our main result is formulated as follows:



Theorem 1 If P£ANP, then for each rational e > 0, 7 > 0, a > 0 and for each integer
k > 0 there exist n X n matrices A, A > 0 and n-vectors b, § > 0 for some n > 2 such
that

o(|A7HA) =0 (8)
[Allm = (9)
16]loc =7

hold and the solution x' of each system (2) with data (3), (4) satisfies
|2} — 21| + an® < dy,

where x is the solution of (1) and d is given by (7).

Proof. Assume to the contrary that it is not so, so that there exist rational numbers
e>0,7>0,a >0 and an integer £ > 0 such that for each n > 2 and all n x n
matrices A, A > 0 and all n-vectors b, § > 0 satisfying (8)—(10) we have

|2} — 21| + an® > d,

(12)

for the solution 2’ of some system (2) with data (3), (4) . )
Take an arbitrary m x m MC-matrix A, m > 1, i.e. a matrix A satisfying A;; = m

and A;; € {0, =1} if i #j (i,j = 1,...,m); A is nonsingular (cf. [4]). Let us define

e of
A= ( 8 /I_l )7 (13)

0 ee”
A:(O 0 ) (14)

where v = a(m +1)* and e = (1,...,1)T € R™ (hence A and A are of size (m + 1) x
(m+ 1)), and let

8
and
5= ( 0 ) (16)

be (m + 1)-dimensional vectors. Then
0 el
ATHNA = n
hence (8), (9) and (10) hold, the solution of (1) is = 0 and for

Ty := max{z]; ' solves (2) under (3), (4)}
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we have (if we denote & = (29,23, ...,2,,)7) that

T = ElmaX{EeT\i"]; —ne < A% < ne}

= ymax{||Az|,; #; € {~1,1} for each j}

= [ Alea
(see Golub and van Loan [2] for definition of || A||«.1), and in a similar way for
x; := min{z}; 2’ solves (2) under (3), (4)}

we obtain )
z; = = Alleo1-
Let us now compute d by (7). Then in view of (12) we have (since z = 0) that

WAl > [#4] > di — a(m + 1) = dy — 7,

hence )
dy < (|| Alloo,r +1)- (17)
But in view of (6) and of z = 0 we also have
MAlooq =71 < i, (18)
hence (17) and (18) give
y dy 3
14lloor < =5 < 1401 + 1. (19)

Since the MC-matrix A is integer by definition, the number
| Al|oo.1 = max{||Az||s; 2; € {—1,1} for each 5}
is also integer, hence from (19) we finally obtain

s = 2] (20)
v

where [...] denotes the integer part.
Summing up, we have proved the following: given an M C-matrix A, if we construct
A, A, band ¢ by (13)—(16) and then compute d by (7), then (20) holds. Since all these
computations can be done in polynomial time (Schrijver [7]), we have a polynomial-
time algorithm for computing ||A,; for an MC-matrix A. However, computing
|A]|oss was proved to be NP-hard for MC-matrices A ([5], Corollary 7, which is a
simple consequence of Theorem 2.6 in [3]). Hence, an existence of a polynomial-
time algorithm for solving an NP-hard problem implies P=NP, which contradicts our
assumption. n



3 Concluding remarks

We have proved that if P#NP, then for arbitrarily narrow perturbations (9), (10)
the formula (7) may yield a catastrophic overestimation (11). This, of course, is a
worst-case-type result. The conjecture “P#NP” has not been proved to date, but
it is widely believed to be true (Garey and Johnson [1]). In any case, we can see
that the conjecture is closely related to one of the basic problems in numerical linear
algebra,; if the assertion concerning the overestimation (11) is not true, then a simple
algorithm based on formulae (13), (14), (15), (16), (7) and (20) gives a polynomial-
time algorithm for solving an NP-hard problem, thereby also solving in polynomial
time all the problems in the class NP.
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