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Abstract

It is proved that a classical bound on solutions of perturbed systems of linear
equations may yield arbitrarily large polynomial overestimations for arbitrarily
narrow perturbations provided the conjecture “P6=NP” is true.
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1 Introduction

For a system of linear equations
Ax = b (1)

with an n× n nonsingular matrix A, consider a family of perturbed systems

A′x′ = b′ (2)

with data satisfying
|A′ − A| ≤ ∆ (3)

and
|b′ − b| ≤ δ, (4)

where ∆ ≥ 0 and δ ≥ 0 are an n × n perturbation matrix and a perturbation n-
vector, respectively, and the inequalities are understood componentwise. The classical
numerical argument using Neumann series shows that if the spectral condition

%(|A−1|∆) < 1 (5)
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holds, then each A′ satisfying (3) is nonsingular and the solution of each system (2)
with data (3), (4) satisfies

|x′ − x| ≤ d, (6)

where
d = (I − |A−1|∆)−1|A−1|(∆|x|+ δ) (7)

and I is the unit matrix (see Skeel [8] or Rump [6]). To keep the paper self–contained,
we give here another simple proof of this result: for the solutions x, x′ of (1), (2) under
(3), (4) we have

|x′ − x| = |A−1A(x′ − x)| ≤ |A−1| · |(A− A′)(x′ − x) + (A− A′)x + b′ − b|
≤ |A−1|(∆|x′ − x|+ ∆|x|+ δ),

hence
(I − |A−1|∆)|x′ − x| ≤ |A−1|(∆|x|+ δ)

and premultiplying this inequality by (I − |A−1|∆)−1, which is nonnegative in view of
(5), we obtain (6), where d is given by (7).

The quality of the estimation (6) has been paid little attention in the literature.
Obviously, the bound d is exact if ∆ = 0. In fact, in this case, for each i ∈ {1, . . . , n},
if we take b′j = bj + δj if (A−1)ij ≥ 0 and b′j = bj − δj otherwise, then b′ satisfies (4)
and for the solution x′ of Ax′ = b′ we have

|x′i − xi| =
∑

j

|(A−1)ij|δj = di,

hence the bound is achieved. However, this argument fails in the case ∆ 6= 0. In
this paper we show that the famous conjecture “P 6=NP” (see Garey and Johnson [1]
for details) shreds a surprising light on this problem: in the main result to follow
we show that if the conjecture is true, then the formula (6) may yield an arbitrarily
large polynomial overestimation for arbitrarily narrow perturbations ∆, δ. Hence, the
conjecture penetrates the area of numerical linear algebra as well.

2 Main result

We shall use the subordinate matrix norm

‖∆‖m = max
i,j

|∆ij|

and the vector norm
‖δ‖∞ = max

i
|δi|.

Our main result is formulated as follows:
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Theorem 1 If P 6=NP, then for each rational ε > 0, η > 0, α > 0 and for each integer
k ≥ 0 there exist n×n matrices A, ∆ ≥ 0 and n-vectors b, δ ≥ 0 for some n ≥ 2 such
that

%(|A−1|∆) = 0 (8)

‖∆‖m = ε (9)

‖δ‖∞ = η (10)

hold and the solution x′ of each system (2) with data (3), (4) satisfies

|x′1 − x1|+ αnk ≤ d1, (11)

where x is the solution of (1) and d is given by (7).

Proof. Assume to the contrary that it is not so, so that there exist rational numbers
ε > 0, η > 0, α > 0 and an integer k ≥ 0 such that for each n ≥ 2 and all n × n
matrices A, ∆ ≥ 0 and all n-vectors b, δ ≥ 0 satisfying (8)–(10) we have

|x′1 − x1|+ αnk > d1 (12)

for the solution x′ of some system (2) with data (3), (4).
Take an arbitrary m×m MC-matrix Ã, m ≥ 1, i.e. a matrix Ã satisfying Ãii = m

and Ãij ∈ {0,−1} if i 6= j (i, j = 1, . . . , m); Ã is nonsingular (cf. [4]). Let us define

A =

(
εη
γ

0T

0 Ã−1

)
, (13)

∆ =

(
0 εeT

0 0

)
, (14)

where γ = α(m + 1)k and e = (1, . . . , 1)T ∈ IRm (hence A and ∆ are of size (m + 1)×
(m + 1)), and let

b =

(
0
0

)
(15)

and

δ =

(
0
ηe

)
(16)

be (m + 1)-dimensional vectors. Then

|A−1|∆ =

(
0 γ

η
eT

0 0

)
,

hence (8), (9) and (10) hold, the solution of (1) is x = 0 and for

x1 := max{x′1; x′ solves (2) under (3), (4)}
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we have (if we denote x̃ = (x2, x3, . . . , xm)T ) that

x1 =
γ

εη
max{εeT |x̃|; −ηe ≤ Ã−1x̃ ≤ ηe}

= γ max{‖Ãx‖1; xj ∈ {−1, 1} for each j}
= γ‖Ã‖∞,1

(see Golub and van Loan [2] for definition of ‖Ã‖∞,1), and in a similar way for

x1 := min{x′1; x′ solves (2) under (3), (4)}
we obtain

x1 = −γ‖Ã‖∞,1.

Let us now compute d by (7). Then in view of (12) we have (since x = 0) that

γ‖Ã‖∞,1 ≥ |x′1| > d1 − α(m + 1)k = d1 − γ,

hence
d1 < γ(‖Ã‖∞,1 + 1). (17)

But in view of (6) and of x = 0 we also have

γ‖Ã‖∞,1 = x1 ≤ d1, (18)

hence (17) and (18) give

‖Ã‖∞,1 ≤ d1

γ
< ‖Ã‖∞,1 + 1. (19)

Since the MC-matrix Ã is integer by definition, the number

‖Ã‖∞,1 = max{‖Ãx‖1; xj ∈ {−1, 1} for each j}
is also integer, hence from (19) we finally obtain

‖Ã‖∞,1 =

[
d1

γ

]
, (20)

where [. . .] denotes the integer part.
Summing up, we have proved the following: given an MC-matrix Ã, if we construct

A, ∆, b and δ by (13)–(16) and then compute d by (7), then (20) holds. Since all these
computations can be done in polynomial time (Schrijver [7]), we have a polynomial-
time algorithm for computing ‖Ã‖∞,1 for an MC-matrix Ã. However, computing
‖Ã‖∞,1 was proved to be NP-hard for MC-matrices Ã ([5], Corollary 7, which is a
simple consequence of Theorem 2.6 in [3]). Hence, an existence of a polynomial-
time algorithm for solving an NP-hard problem implies P=NP, which contradicts our
assumption.
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3 Concluding remarks

We have proved that if P 6=NP, then for arbitrarily narrow perturbations (9), (10)
the formula (7) may yield a catastrophic overestimation (11). This, of course, is a
worst-case-type result. The conjecture “P 6=NP” has not been proved to date, but
it is widely believed to be true (Garey and Johnson [1]). In any case, we can see
that the conjecture is closely related to one of the basic problems in numerical linear
algebra; if the assertion concerning the overestimation (11) is not true, then a simple
algorithm based on formulae (13), (14), (15), (16), (7) and (20) gives a polynomial-
time algorithm for solving an NP-hard problem, thereby also solving in polynomial
time all the problems in the class NP.
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