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Linear Programming with Inexact Data is NP-Hard

We prove that the problem of checking existence of optimal solutions to all linear programming problems whose data
range in prescribed intervals is NP-hard.

1. The result

Consider a family of linear programming (LP) problems

min{cT x; Ax = b, x ≥ 0} (1)

for all data satisfying

A ∈ AI , b ∈ bI , c ∈ cI , (2)

where AI = {A; A ≤ A ≤ A} is an m × n interval matrix, m ≤ n, and bI = {b; b ≤ b ≤ b}, cI = {c; c ≤ c ≤ c}
are interval vectors of dimensions m and n, respectively (the inequalities are understood componentwise). The
family (1), (2) may be interpreted as a linear programming problem with inexact data, or as a fully parametrized
parametric linear programming problem.

The problem of existence of optimal solutions to all linear programming problems in the family (1), (2) was
addressed in [5]. There it was proved that each LP problem (1) with data satisfying (2) has an optimal solution if
and only if the LP problem min{cT x; Ax ≤ b, Ax ≥ b, x ≥ 0} has an optimal solution, and each of the 2m systems
Ax = b whose each row is either of the form (Ax)i = bi or of the form (Ax)i = bi (i = 1, . . . , m) has a nonnegative
solution. Hence, we have a finitely verifiable necessary and sufficient condition, but the number of systems to be
checked for nonnegative solvability is exponential in m.

In the main result of this paper we show that the problem in question is NP-hard. Hence, unless the famous
conjecture “P 6=NP” (see Garey and Johnson [1]) is false, there does not exist a polynomial-time algorithm for
checking existence of optimal solutions to all LP problems (1), (2). The proof given below shows that even checking
feasibility of all LP problems in the family (1), (2) is NP-hard.

T h e o r e m 1. The following decision problem is NP-hard:
Instance. AI , bI , cI (with rational bounds).
Question. Does each LP problem (1) with data satisfying (2) have an optimal solution?

Proof. 0) For the purpose of the proof, let us introduce Ac = 1
2 (A + A), ∆ = 1

2 (A − A), bc = 1
2 (b + b) and

δ = 1
2 (b− b), so that AI = [Ac −∆, Ac + ∆] and bI = [bc − δ, bc + δ]. The proof goes through several steps.

1) First we prove that each system

Ax = b, x ≥ 0 (3)

with data satisfying

A ∈ AI , b ∈ bI (4)

has a solution if and only if

(∀y)(AT
c y + ∆T |y| ≥ 0 ⇒ bT

c y − δT |y| ≥ 0) (5)

holds. “Only if”: Let each system (3) with data (4) have a solution, and let AT
c y + ∆T |y| ≥ 0 for some y ∈ IRm.

Define a diagonal matrix T by Tii = 1 if yi ≥ 0, Tii = −1 if yi < 0, and Tij = 0 if i 6= j (i, j = 1, . . . ,m), then
|y| = Ty. Consider now the system

(Ac + T∆)x = bc − Tδ, x ≥ 0. (6)



Since Ac +T∆ ∈ AI and bc−Tδ ∈ bI , the system (6) has a solution according to the assumption, and (Ac +T∆)T y =
AT

c y + ∆T |y| ≥ 0, hence Farkas lemma applied to (6) gives that bT
c y − δT |y| = (bc − Tδ)T y ≥ 0, which proves

(5). “If”: Assuming that (5) holds, consider a system (3) with data satisfying (4). Let AT y ≥ 0 for some y; then
AT

c y + ∆T |y| ≥ (Ac + A−Ac)T y = AT y ≥ 0, hence (5) gives that bT y = (bc + b− bc)T y ≥ bT
c y− δT |y| ≥ 0. Thus we

have proved that for each y, AT y ≥ 0 implies bT y ≥ 0, and Farkas lemma proves the existence of a solution to (3).

2) For a given square m×m interval matrix AI
0 = [A0

c −∆0, A0
c + ∆0], construct an m× 2m interval matrix

AI = [Ac −∆, Ac + ∆] (7)

with

Ac = (A0T
c ,−A0T

c ), ∆ = (∆0T , ∆0T ), (8)

and interval vectors

bI = [−e, e], cI = [e, e], (9)

where e = (1, . . . , 1)T . We shall prove that AI
0 is regular (i.e., each A ∈ AI

0 is nonsingular) if and only if each LP
problem (1) with data satisfying (2) (AI , bI , cI given by (7)–(9)) has an optimal solution. In fact, since the objective
eT x is bounded from below, a problem (1) has an optimal solution if and only if it is feasible. Hence, according
to part 1), Eq. (5), some problem (1) with data (2) does not have an optimal solution if and only if there exists a

vector y satisfying

(
A0

c

−A0
c

)
y +

(
∆0

∆0

)
|y| ≥ 0 and eT |y| > 0, which is equivalent to

|A0
cy| ≤ ∆0|y|, y 6= 0. (10)

Then the Oettli–Prager theorem [3] gives that (10) is equivalent to existence of a singular matrix in AI
0 =

[A0
c −∆0, A0

c + ∆0]. This proves the assertion.

3) Given a square m ×m interval matrix AI
0, construct an m × 2m interval matrix AI and interval vectors

bI , cI by (7)–(9). According to part 2), checking regularity of AI
0 can be reduced in polynomial time to checking

optimality of all problems (1), (2). But since the problem of checking regularity of interval matrices is NP-hard
(Poljak and Rohn [4], Theorem 2.8), the problem of checking whether each LP problem (1) with data satisfying
(2) has an optimal solution is NP-hard as well.

2. Concluding remarks

Khachiyan [2] proved that an LP problem (1) can be solved in polynomial time. The above result shows that
this nice property is lost when inexact data are present. Nevertheless, the worst–case–type result of Theorem 1
does not preclude efficient solvability of many practical examples. The criterion from [5] quoted in the introduction
requires solving one LP problem and checking nonnegative solvability of 2p systems of linear equations, where p is
the number of rows i having at least one inexact coefficient (i.e., either bi < bi, or Aij < Aij for some j). Thus the
criterion can be efficiently applied to practical examples with small values of p.
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