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Complexity of Solving Linear Interval Equations

It is proved that computing enclosures of solutions of linear interval equations with overestimation bounded by a
polynomial in the system size is NP-hard.

1. Introduction

Solving linear interval equations usually means computing enclosures. For a system of linear interval equations

AIx = bI (1)

(AI square), enclosure is defined as an interval vector [y, y] satisfying

X ⊆ [y, y],

where X is the solution set:

X = {x; Ax = b for some A ∈ AI , b ∈ bI}.

Various enclosure methods can be found in Alefeld and Herzberger [1]. If AI is regular (i.e., each A ∈ AI is
nonsingular), then there exists the narrowest enclosure [x, x] given by

xi = min
X

xi,

xi = max
X

xi

for each i. Computing [x, x] was proved to be NP-hard (Rohn and Kreinovich [7]; also, Kreinovich, Lakeyev and
Noskov [4] for the rectangular case). In the main result of this paper we show that computing enclosures with
overestimation bounded by a polynomial in the system size is NP-hard. The result holds true even for a very
restricted class of systems (1) with AI = [Ac−∆, Ac + ∆] having nondegenerate interval coefficients in one row only
and satisfying %(|A−1

c |∆) = 0. Hence, the problem of computing sufficiently narrow enclosures turns out to be more
difficult than previously believed.

2. Preliminaries

A real symmetric n× n matrix A = (aij) is called an MC-matrix [5] if it is of the form

aij

{
= n if i = j
∈ {0,−1} if i 6= j

(i, j = 1, . . . , n). In the proof of the main theorem we shall essentially utilize the following result ([6], Corollary 7)
concerning the norm

‖A‖∞,1 = max{‖Ax‖1; ‖x‖∞ = 1}

(where ‖x‖1 =
∑

i |x|i and ‖x‖∞ = maxi |xi|; see Golub and van Loan [3], p. 15):

P r o p o s i t i o n 1. Computing ‖A‖∞,1 is NP-hard for MC-matrices.

Next we introduce a class of systems (1) of a special form. For each pair of rational numbers ε > 0, δ > 0 we shall
denote by Hεδ the family of systems of linear interval equations

AIx = bI



with AI of the form

AI =

(
a [−εeT , εeT ]
0 A−1

)
, (2)

where a is a positive rational number, A is an n× n MC-matrix (n arbitrary, n ≥ 1), e = (1, 1, . . . , 1)T ∈ IRn (i.e.,
AI is (n + 1)× (n + 1)), and

bI =

(
0

[−δe, δe]

)
(3)

is an (n + 1)-dimensional interval vector. If we write (2) as

AI = [Ac −∆, Ac + ∆],

then

Ac =

(
a 0T

0 A−1

)

is nonnegative symmetric positive definite [5], the radius matrix

∆ =

(
0 εeT

0 0

)

has nonzero coefficients in the first row only, and

|A−1
c |∆ =

(
0 ε

aeT

0 0

)
,

hence

%(|A−1
c |∆) = 0.

Thus the interval matrix (2) is strongly regular (i.e. %(|A−1
c |∆) < 1); problems with strongly regular interval matrices

have been usually considered ”tractable”.

In order to be able to formulate a unifying complexity result, we introduce the following concept: enclosure
algorithm is an algorithm which for each system AIx = bI with rational data (and square AI) in a finite number of
steps either computes a rational enclosure, or fails (i.e., issues an error message). Failure of an enclosure algorithm
may be caused by various reasons: 1) no enclosure exists since the solution set is unbounded (in case of a singular
AI), 2) the algorithm cannot be continued (e.g. in case of the interval Gaussian algorithm), 3) the algorithm works
under some condition only (e.g., strong regularity), 4) a prescribed number of steps has been reached, etc.

3. Main result

T h e o r e m 1. If P 6= NP , then for each polynomial-time enclosure algorithm and each rational ε > 0, δ > 0
either (i), or (ii) holds:

(i) the algorithm fails for some system in Hεδ,

(ii) for each rational α > 0 and each integer k ≥ 0 there exists a system of size n ≥ 2 in Hεδ for which the
enclosure [y, y] computed by the algorithm satisfies

y
1
≤ x1 − αnk < x1 + αnk ≤ y1. (4)

R e m a r k 1. 1) P and NP are the well-known complexity classes. The conjecture that P6=NP, although
unproved, is widely believed to be true (cf. Garey and Johnson [2]). 2) If the conjecture holds true, then each
polynomial-time enclosure algorithm which works for at least one family Hεδ may produce arbitrarily large overes-
timations (4); hence, no (even arbitrarily bad) accuracy can be guaranteed to be achievable by a polynomial-time
enclosure algorithm.



Proof. Assume to the contrary that there exists a polynomial-time enclosure algorithm, rational numbers
ε > 0, δ > 0, α > 0 and an integer k ≥ 0 such that for each system in Hεδ the algorithm computes an enclosure
[y, y] satisfying either

x1 − αnk < y
1

or

y1 < x1 + αnk,

where n is the system size. Let A be an arbitrary MC-matrix of size m. Let us construct an (m + 1) × (m + 1)
interval matrix

AI =

(
εδ
γ [−εeT , εeT ]
0 A−1

)
,

where

γ = α(m + 1)k,

and an (m + 1)-dimensional interval vector

bI =

(
0

[−δe, δe]

)
,

and apply the algorithm to the system

AIx = bI (5)

(which obviously belongs to Hεδ) to compute an enclosure [y, y] which, according to the assumption, satisfies either

x1 − γ < y
1

(6)

or

y1 < x1 + γ. (7)

This can be done in polynomial time. We shall prove that

‖A‖∞,1 =

[
1
γ

min{−y
1
, y1}

]
(8)

holds, where [. . .] denotes the integer part. Hence, ‖A‖∞,1 can be computed in polynomial time; but since this is an
NP-hard problem (Proposition 1), P=NP will follow. To prove (8), first observe that the system (5) can be written
as

εδ

γ
x1 + [−εeT , εeT ]x′ = 0,

−δe ≤ A−1x′ ≤ δe,

where x′ = (x2, . . . , xm)T . Hence

x1 =
γ

εδ
max{εeT |x′|; −δe ≤ A−1x′ ≤ δe}

= γ max{‖x′′‖1; −e ≤ A−1x′′ ≤ e}
= γ max{‖Ax′′′‖1; −e ≤ x′′′ ≤ e}
= γ max{‖Ax′′′‖1; ‖x′′′‖∞ = 1}
= γ‖A‖∞,1

and in a quite similar way,
x1 = −γ‖A‖∞,1.

Hence from (6) and (7) we obtain that either

− 1
γ

y
1

< ‖A‖∞,1 + 1



or

1
γ

y1 < ‖A‖∞,1 + 1

holds, in both the cases

1
γ

min{−y
1
, y1} < ‖A‖∞,1 + 1. (9)

But since [y
1
, y1] encloses [x1, x1], from y

1
≤ x1, x1 ≤ y1 we have

‖A‖∞,1 ≤ 1
γ

min{−y
1
, y1}

which together with (9) gives

‖A‖∞,1 ≤ 1
γ

min{−y
1
, y1} < ‖A‖∞,1 + 1. (10)

However, the number

‖A‖∞,1 = max{‖Ax‖1; ‖x‖∞ = 1} = max{‖Ax‖1; xj ∈ {−1, 1} for each j}
is integer for an MC-matrix A (which is integer by definition), hence from (10) we finally obtain that

‖A‖∞,1 =

[
1
γ

min{−y
1
, y1}

]
,

which is (8). Hence, ‖A‖∞,1 can be computed in polynomial time for an MC-matrix A, which in view of Proposition
1 implies that P=NP. This concludes the proof by contradiction.

4. Application: interval Gaussian algorithm

For each rational ε > 0, δ > 0, the interval Gaussian algorithm with partial pivoting [1] (which is polynomial-time)
is performable for each system in Hεδ since all the pivots are real and nonzero due to the special form of the system
matrix (2). Hence, if P 6=NP, then arbitrarily large overestimations (4) may occur for arbitrarily narrow system
matrices (2) and arbitrarily narrow right-hand sides (3).
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