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ABSTRACT

It is proved that if there exists a polynomial-time algorithm for enclosing solutions of
linear interval equations with relative overestimation better than 4

n2 (where n is the
number of equations), then P=NP. The result holds for the symmetric case as well.

1 INTRODUCTION

For a system of linear interval equations

AIx = bI (1.1)

(AI square), enclosure is defined as an interval vector [y, y] satisfying

X ⊆ [y, y]

where X is the solution set:

X = {x; Ax = b for some A ∈ AI , b ∈ bI}.
Various enclosure methods can be found in Alefeld and Herzberger [2] or Neu-
maier [7]. If AI is regular, then there exists the narrowest (or: optimal) enclo-
sure [x, x] given by

xi = min
X

xi,
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xi = max
X

xi

for each i. Computing [x, x] was proved to be NP-hard (Rohn and Kreinovich
[12]; also, Kreinovich, Lakeyev and Noskov [6] for the rectangular case). In
this paper we show that the same is true for computing “sufficiently accurate”
enclosures (Theorem 1), even in the symmetric case (Theorem 2).

2 THE RESULT

Theorem 1. Suppose there exists a polynomial-time algorithm which for each
strongly regular n×n interval matrix AI and each bI (both with rational bounds)
computes a rational enclosure [y, y] of X satisfying

∣∣∣∣
yi − xi

xi

∣∣∣∣ ≤
4
n2

(1.2)

for each i with xi 6= 0. Then P=NP.

Comments.

1) AI = [Ac − ∆, Ac + ∆] is called strongly regular if %(|A−1
c |∆) < 1 (a well-

known sufficient regularity condition).

2) P and NP are the well-known complexity classes. The conjecture that P6=NP,
although unproved, is widely believed to be true (Garey and Johnson [3]).

3) Hence, the problem of computing sufficiently accurate enclosures is very
difficult: an existence of a polynomial-time algorithm yielding the accuracy
(1.2) would imply polynomial-time solvability of all problems in the class NP. At
the current stage of the complexity theory (conjecture P 6=NP) this possibility
cannot be excluded, but must be considered highly unlikely.

Proof. 1) Denote e = (1, 1, . . . , 1)T ∈ Rn and Z = {z ∈ Rn; |zi| =
1 for each i}, so that Z is the set of all ±1-vectors. We shall use matrix norms

‖M‖s = eT |M |e =
∑

i

∑

j

|mij |

and
‖M‖∞,1 = max{‖Mz‖1; z ∈ Z} (1.3)

(where ‖x‖1 =
∑

i |xi|; cf. [4]). bαc denotes the integer part of a real number α.
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2) A real symmetric n×n matrix M = (mij) is called an MC-matrix if it is of
the form

mij

{
= n if i = j
∈ {0,−1} if i 6= j

(i, j = 1, . . . , n). For an MC-matrix M we obviously have

n ≤ eT Me ≤ ‖M‖∞,1 ≤ ‖M‖s ≤ n(2n− 1). (1.4)

Also,
zi(Mz)i > 0 (1.5)

holds for each z ∈ Z and each i ∈ {1, . . . , n}. We shall essentially use the fact
that computing ‖M‖∞,1 is NP-hard for MC-matrices [10, Corollary 7]. In the
sequel we shall construct, for a given n × n MC-matrix M , a linear interval
system with interval matrix of size 3n× 3n such that if yi satisfies (1.2), then

‖M‖∞,1 = b‖M‖s + 1− 1
yi

c.

Hence, if such a yi can be computed in polynomial time, then ‖M‖∞,1 can also
be computed in polynomial time and since this is an NP-hard problem, P=NP
will follow.

3) For a given n×n MC-matrix M (which is diagonally dominant and therefore
nonsingular), consider a linear interval system

AIx = bI (1.6)

with AI = [Ac −∆, Ac + ∆], bI = [bc − δ, bc + δ] given by

Ac =




0 −I 0
−I 0 M−1

0 M−1 M−1


 ,

∆ =




0 0 0
0 0 0
0 0 βeeT




(all the blocks are n× n, I is the unit matrix),

bc =




0
0
0


 ,
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δ =




0
0
βe




(all the blocks are n× 1) and

β =
1

‖M‖s + 1
. (1.7)

We shall first prove that AI is strongly regular. Since

A−1
c =




M−1 −I I
−I 0 0
I 0 M




(as it can be easily verified), we have

|A−1
c |∆ =




0 0 βeeT

0 0 0
0 0 β|M |eeT


 .

This matrix has eigenvalues λ = 0 (multiple) and λ = β‖M‖s. Hence
%(|A−1

c |∆) = β‖M‖s < 1 due to (1.7), and AI is strongly regular.

4) For the linear interval system (1.6), consider a solution x of the linear system
Ãx = b̃ for some Ã ∈ AI , b̃ ∈ bI . If we decompose x as

x =




x(1)

x(2)

x(3)


 ,

then we have

x(1) = M−1x(3)

x(2) = 0

M ′x(3) = b′

for some M ′, b′ satisfying |M−1 − M ′| ≤ βeeT and |b′| ≤ βe, hence x(3) is a
solution of the linear interval system

[M−1 − βeeT ,M−1 + βeeT ]x′ = [−βe, βe] (1.8)

whose matrix is obviously again strongly regular. From [8, Thm. 2.2] we have
that for each z ∈ Z the equation

M−1x = β(‖x‖1 + 1)z (1.9)
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has a unique solution xz. A direct substitution shows that the solution has the
form

xz =
β

1− β‖Mz‖1
Mz.

Now, from the same Theorem 2.2 in [8] we have that each solution of (1.8)
belongs to the convex hull of the xz’s, hence also

x(3) ∈ Conv{ β

1− β‖Mz‖1
Mz; z ∈ Z}

which implies

x(1) = M−1x(3) ∈ Conv{ β

1− β‖Mz‖1
z; z ∈ Z}.

Thus for each i ∈ {1, . . . , n} we have

x
(1)
i ≤ β

1− β max{‖Mz‖1; z ∈ Z} =
β

1− β‖M‖∞,1

and the upper bound is obviously achieved at some xz which, due to (1.9) and
(1.5), solves the equation

(M−1 − βzzT )xz = βz. (1.10)

Hence for the 3n-dimensional solution x of (1.6) we have

xi = x
(1)
i =

β

1− β‖M‖∞,1
(1.11)

for each i ∈ {1, . . . , n} (cf. [12]).

5) Let i ∈ {1, . . . , n}. Due to (1.4), (1.7) and (1.11) we have

β ≥ 1
n(2n− 1) + 1

=
1

2n2 − n + 1

and

xi ≥ β

1− βn
≥

1
2n2−n+1

1− n
2n2−n+1

=
1

2n2 − 2n + 1
≥ 1

2n2
.

Hence, if an enclosure [y, y] of the solution set of (1.6) satisfies (1.2), then

0 ≤ yi − xi

xi
≤ 4

(3n)2
<

1
2n2

≤ xi ≤ yi,
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which implies

0 ≤ 1
xi
− 1

yi

< 1. (1.12)

Now, from (1.11) we have

‖M‖∞,1 =
1
β
− 1

xi

and adding this to (1.12), we obtain

‖M‖∞,1 ≤ 1
β
− 1

yi

< ‖M‖∞,1 + 1.

Since ‖M‖∞,1 is integer for an MC-matrix M (due to (1.3)), the last result
implies

‖M‖∞,1 = b 1
β
− 1

yi

c = b‖M‖s + 1− 1
yi

c.

Thus, if yi satisfying (1.2) can be computed by a polynomial-time algorithm,
then the same is true for ‖M‖∞,1 and since computing ‖M‖∞,1 is NP-hard for
MC-matrices [10], P=NP follows. 2

3 THE SYMMETRIC CASE

Let AI = [Ac − ∆, Ac + ∆] be a symmetric interval matrix (i.e., the bounds
Ac −∆ and Ac + ∆ are symmetric) and let Xs be the set of solutions of (1.1)
corresponding to systems with symmetric matrices only:

Xs = {x; Ax = b for some A ∈ AI , b ∈ bI , A symmetric}.

Again, [y, y] is called an enclosure of Xs if Xs ⊆ [y, y] holds. Enclosure methods
for the symmetric case were given by Jansson [5] and Alefeld and Mayer [1].
The narrowest enclosure is [xs, xs], where

xs
i = min

Xs
xi,

xs
i = max

Xs
xi

for each i. We have an analogous result:

Theorem 2. Suppose there exists a polynomial-time algorithm which for each
strongly regular symmetric n × n interval matrix AI and each bI (both with
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rational bounds) computes a rational enclosure [y, y] of Xs satisfying

∣∣∣∣
yi − xs

i

xs
i

∣∣∣∣ ≤
4
n2

for each i with xs
i 6= 0. Then P=NP.

Proof. The system (1.6) constructed in the proof of Theorem 1 has a symmetric
interval matrix AI and each xi, i = 1, . . . , n, is achieved at the solution of a
system whose matrix is of the form




0 −I 0
−I 0 M−1

0 M−1 M−1 − βzzT




(Eq. (1.10)), hence it is symmetric (since an MC-matrix M is symmetric).
Thus we have

xi = xs
i (1.13)

for i = 1, . . . , n, and the proof of Theorem 1 applies to this case as well. 2

In particular, (1.13) in view of (1.11) and [10, Corollary 7] implies that comput-
ing the narrowest enclosure [xs, xs] is NP-hard. Hence, taking symmetry into
account does not help to overcome the NP-hardness of computing the narrowest
enclosure established in [12]. A related result [9] says that checking nonsingu-
larity of all symmetric matrices contained in a symmetric interval matrix is
NP-hard.

4 CONCLUDING REMARK

Small modifications in Eq. (1.7) and in the part 5) of the proof show that
Theorem 1 also holds true if the relative overestimation bound (1.2) is replaced
by the absolute overestimation bound

yi ≤ xi +
1

4n4
(1.14)

for each i (see [11]). This form seems to be less appropriate than (1.2) since
the term 1

4n4 in (1.14) is not related to the magnitude of xi.
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