Linear Interval Equations: Computing
Sufficiently Accurate Enclosures is NP-Hard*

Jit{ Rohn'

Abstract

It is proved that if there exists a polynomial-time algorithm which
for each system of linear interval equations with a strongly regular n xn
interval matrix computes an enclosure of the solution set with absolute
accuracy better than —1;, then P=NP.
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1 Introduction

This report is partly a transcript of a poster!. The main result (Theorem 1)
shows that one of the basic problems in validated computations is more difficult
than expected.

2 Enclosures
For a system of linear interval equations

Aly = (1)
(A! square), enclosure is defined as an interval vector [y, ] satisfying

X Cly,7l
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where X is the solution set:
X = {x; Az = b for some A € A", beb'}).
If AT is regular, then there exists the narrowest (or: optimal) enclosure [z, 7]
given by
x; = min z;,
X

Tr; = Maxx;
X

for each i. Computing [z, T] was proved to be NP-hard (Rohn and Kreinovich
[5]). But it turns out that the same is true for computing ”sufficiently accurate”
enclosures:

3 The result

Theorem 1 Suppose there exists a polynomial-time algorithm which for each
strongly reqular nxn interval matriz A' and each b’ (both with rational bounds)
computes a rational enclosure [y, 7] of X satisfying

. 2)

T; <Y, <7T; +

for each i. Then P=NP.

4 Comments

Al =[A.— A, A.+ Al is called strongly regular if o(|]AZ'|A) < 1 (a well-known
sufficient regularity condition).

P and NP are the well-known complexity classes. The conjecture that P#£NP,
although unproved, is widely believed to be true (Garey and Johnson [1]).

Hence, the problem of computing sufficiently accurate enclosures is by far
more difficult than previously believed: an existence of a polynomial-time al-
gorithm yielding the accuracy (2) would imply polynomial-time solvability of
all problems in the class NP, thereby making an enormous breakthrough in
theoretical computer science.

5 Proof

1) Denote e = (1,1,..., 1) € R" and Z = {2z € R"; |z| = e}, so that Z is
the set of all =1-vectors. We shall use matrix norms

1Alls = e Ale = 3°> " |as]
J

%
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and

[Alloo,1 = max{[|Az[|s; 2 € Z} (3)

(where ||z||; = X; |xi]; cf. [2]). [«] denotes the integer part of a real number a.
2) A real symmetric n x n matrix A = (a;;) is called an M C-matrix if it is

of the form
[ =n if Q=
Yl e{0, -1} if i#j

(1,7 =1,...,n). For an MC-matrix A we obviously have
n<elAe < ||Alloor < | Alls < n(2n — 1). (4)

Also,

holds for each z € Z and each i € {1,...,n}. We shall essentially use the fact
that computing [|A| w1 is NP-hard for M C-matrices [3, Thm. 2.6]. In the
sequel we shall construct, for a given n x n MC-matrix A, a linear interval
system with interval matrix of size 3n x 3n such that if 7, satisfies (2), then

1
HmuJ:mAm+2—5L

Hence, if such a y; can be computed in polynomial time, then ||A|/ 1 can also
be computed in polynomial time and since this is an NP-hard problem, P=NP
will follow.

3) For a given n x n MC-matrix A (which is diagonally dominant and
therefore nonsingular), consider a linear interval system

Alg = ! (6)
with AT = [A. — A, A, + A, b = [b. — 6, b, + §] given by

0O —-I 0
A-1
AL ’

00 0
A=]100 0
0 0 Beel

(all the blocks are n x n, I is the unit matrix),



d=1 0
(e
(all the blocks are n x 1) and
1
= . 7
7 Al v

We shall first prove that A’ is strongly regular. Since

A7V T T
A= -I 0 0
I 0 A

(as it can be easily verified), we have

0 0 Bee”
AZHA=]0 0 0
0 0 p|Alee”
This matrix has eigenvalues A = 0 (multiple) and A = || A||. Hence o(]A;A) =
B|1A]ls < 1 due to (7), and A! is strongly regular.

4) For the linear interval system (6), consider a solution z satisfying Az =1b
for some A € A, b € b’. If we decompose z as

T
r=| 2% |,
23
then we have
22 =0
b= A8
A/x?) b/

for some A’, b’ satisfying |[A~! — A’| < Beel and |V/| < Be, hence z? is a solution
of the linear interval system

A — Bee”, A7 + Bec”|a’ = [~ fe, B (8)

whose matrix is obviously again strongly regular. From [4, Thm. 2.2] we have
that for each z € Z the equation

Alw =Bzl + D)2 (9)



has a unique solution x.. A direct substitution shows that the solution has the
form 5
=———— Az

1— Bl Az|lx

Now, from the same Theorem 2.2 in [4] we have that each solution of (8)
belongs to the convex hull of the x,’s, hence also

T

7% € Conv{ Az; z€ 7}

1— 5[ Az]lx

which implies

2t = A7 '2? € Conv{ 2 2 € Z}.

_ b
1— B[ Az[ly
Thus for each i € {1,...,n} we have

8 B
- fmax{[Az];; 2 € Z}  1- B Afws

1
r; <

and the upper bound is obviously achieved at some x, which, due to (9) and
(5), solves the equation

(A — Bzz")z. = B2 (10)
Hence for the 3n-dimensional solution x of (6) we have

o g

R R — 11
I~ B Ams (11)

for each i € {1,...,n} (cf. [5]).
5) Let i € {1,...,n}. Due to (11), (7) and (4) we have z; € (0,1) and

1 1

> =
B_n(2n—1)—|—2 2n? —n+2’
hence 1
T > B _ems 1

Since the real function % is increasing in (0,1), we have

_9 1

z; > (2n?—2n+2)> 1 > i

1-7; = 1= 55— (202 —2n+2)(2n2 —2n+1) ~ 4n?’

Hence, if 7, satisfies (2), then

-2
Z;

1—1’1'



which implies

and
1 1
0<———<1. (12)
ZT; Yi
Now, from (11) we have
1 1
Alloop =5 — =
s = 5 - 3

and adding this to (12), we obtain

1 1
[Allex < 5 = 2 < 1 4llos + 1.

)

Since || A||oo,1 is integer for an M C-matrix A (due to (3)), the last result implies

1 1 1
Aler =[5~ 21 = (1AL +2 - 2]
ERN Ui
Thus, if 7, satisfying (2) can be computed by a polynomial-time algorithm,
then the same is true for ||A||1 and since computing ||Al|~ 1 is NP-hard for
M C-matrices [3], P=NP follows. O

6 The symmetric case

Let AT = [A. — A, A. + A] be a symmetric interval matrix (i.e., the bounds
A, — A and A. + A are symmetric) and let X* be the set of solutions of (1)
corresponding to systems with symmetric matrices only:

X* = {x; Az =10 for some A € A', bcb', Asymmetric}.

Again, [y,7] is called an enclosure of X* if X* C [y, 7] holds. The narrowest
enclosure is [z°, T°], where
z; = H)l(ip xi,

T; = maxx;
XS

for each 2. We have an analogous result:

Theorem 2 Suppose there exists a polynomial-time algorithm which for each
strongly regular symmetric n x n interval matriz A’ and each b (both with
rational bounds) computes a rational enclosure [y, 7| of X*® satisfying

1
<y <z 4+ —
i =Y ST T

for each i. Then P=NP.



Proof. The system (6) constructed in the proof of Theorem 1 has a sym-
metric interval matrix A’ and each @;, i = 1,...,n, is achieved at the solution
of a system whose matrix is of the form

0 -1 0
-1 0 AL
0 A1 A1 B3z

(eq. (10)), hence it is symmetric (since an M C-matrix A is symmetric). Thus
we have

for i = 1,...,n, and the proof of Theorem 1 applies to this case as well. a
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